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1 With an appropriate diagram, show that in the Rutherford
scattering, the orbit of the particle is a hyperbola. Obtain
an expression for impact parameter.

Introduction: We consider a positively charged particle of charge 𝑧𝑒, mass𝑚, and initial speed
𝑣0 (kinetic energy 𝐸 = 1

2𝑚𝑣2
0) approaching a heavy nucleus of charge 𝑍𝑒 from infinity. The

nucleus is assumed fixed due to its large mass (𝑀 ≫ 𝑚). The particle is deflected by the
repulsive Coulomb force, following a hyperbolic trajectory. The impact parameter 𝑝 is the per-
pendicular distance from the nucleus to the particle’s initial straight‐line path. This derivation
computes 𝑝 in terms of the scattering angle 𝜙.
Solution: The repulsive Coulomb force and potential are:

𝐹(𝑟) = 𝑧𝑍𝑒2

4𝜋𝜀0𝑟2 , 𝑈(𝑟) = 𝑧𝑍𝑒2

4𝜋𝜀0𝑟 . (1)

The force is central, so angular momentum 𝐽 and total energy 𝐸 are conserved:

𝐽 = 𝑚𝑣0𝑝, 𝐸 = 1
2𝑚𝑣2

0, (2)

where 𝑝 is the impact parameter, and 𝑣0 is the initial speed at infinity (where 𝑈(𝑟) → 0).

For a central force, the trajectory is described in polar coordinates (𝑟, 𝜃). The angular momen-
tum is:

𝐽 = 𝑚 𝑟2 ̇𝜃.
The effective potential for radial motion is:

𝑈eff(𝑟) = 𝑈(𝑟) + 𝐽2

2 𝑚 𝑟2 = 𝑧𝑍𝑒2

4𝜋𝜀0 𝑟 + 𝐽2

2 𝑚 𝑟2 .

The total energy is:
𝐸 = 1

2𝑚 ̇𝑟2 + 𝑈eff(𝑟).

To find the orbit, we use the substitution 𝑢 = 1
𝑟 , so 𝑟 = 1

𝑢 , and:

̇𝑟 = 𝑑𝑟
𝑑𝑡 = 𝑑𝑟

𝑑𝜃
𝑑𝜃
𝑑𝑡 = − 1

𝑢2
𝑑𝑢
𝑑𝜃

𝐽
𝑚 𝑟2 = − 𝐽

𝑚
𝑑𝑢
𝑑𝜃 .
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The radial equation becomes:

𝐸 = 1
2 𝑚(− 𝐽

𝑚
𝑑𝑢
𝑑𝜃 )

2
+ 𝑧𝑍𝑒2

4𝜋𝜀0
𝑢 + 𝐽2

2 𝑚 𝑢2,

which can be rearranged to

(𝑑𝑢
𝑑𝜃 )

2
= 2 𝑚 𝐸

𝐽2 − 𝑢2 − 2 𝑚 𝑘
𝐽2 𝑢, 𝑘 = 𝑧𝑍𝑒2

4𝜋𝜀0
.

Differentiating once more with respect to 𝜃 yields the differential equation:

𝑑2𝑢
𝑑𝜃2 + 𝑢 = 𝑚 𝑘

𝐽2 .

The general solution is:

𝑢(𝜃) = 𝑚 𝑘
𝐽2 (1 + 𝑒 cos 𝜃), or

ℓ
𝑟 = 1 + 𝑒 cos 𝜃,

where

ℓ = 𝐽2

𝑚 𝑘, 𝑒 = √ 1 + 2 𝐸 ℓ
𝑘 .

Since 𝐸 > 0 and the potential is repulsive, 𝑒 > 1, indicating a hyperbolic orbit.
The impact parameter 𝑝 relates to the orbit’s geometry. Using

𝐽 = 𝑚 𝑣0 𝑝, 𝐸 = 1
2 𝑚 𝑣2

0,

we find
ℓ = 𝐽2

𝑚 𝑘 = (𝑚 𝑣0 𝑝)2

𝑚 ⋅ 𝑧𝑍𝑒2
4𝜋𝜀0

= 𝑚 𝑣2
0 𝑝2

𝑧𝑍𝑒2
4𝜋𝜀0

= 2 𝐸 𝑝2

𝑘 = 8 𝜋 𝜀0 𝐸 𝑝2

𝑧 𝑍 𝑒2 .

The orbit’s asymptotes occur when 𝑟 → ∞, i.e. 𝑢 → 0, which gives:

1 + 𝑒 cos𝛼 = 0 ⟹ cos𝛼 = −1
𝑒.

Because the hyperbola is symmetric about the periapsis direction, one finds

𝛼 = 𝜋 − 𝜙
2 .

Hence
cos(𝜋

2 − 𝜙
2 ) = − 1

𝑒 ⟹ sin(𝜙
2 ) = 1

𝑒.

Thus
csc(𝜙

2 ) = 𝑒.
Squaring both sides,

csc2(𝜙
2 ) = 𝑒2 = 1 + cot2(𝜙

2 ) = 1 + [2 𝐸 𝑝 (4𝜋𝜀0)
𝑧 𝑍 𝑒2 ]

2
,
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where we have used 𝑒2 = 1 + 2 𝐸 ℓ
𝑘 and ℓ = 2 𝐸 𝑝2

𝑘 , 𝑘 = 𝑧 𝑍 𝑒2
4𝜋𝜀0

. Hence

cot(𝜙
2 ) = 2 𝐸 𝑝 (4𝜋𝜀0)

𝑧 𝑍 𝑒2 .

Solving for 𝑝, we obtain:

𝑝 = 𝑧 𝑍 𝑒2

2 𝐸 (4𝜋𝜀0) cot(𝜙
2 ).

Conclusion: The impact parameter determines the scattering cross‐section, which is crucial
for experiments such as Rutherford’s gold‐foil experiment. A smaller 𝑝 corresponds to a larger
scattering angle 𝜙, indicating a closer approach to the nucleus.
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2 Prove that as a result of an elastic collision of two parti-
cles under the non-relativistic regime with equal masses,
the scattering angle will be 90°. Illustrate your answer with
a vector diagram.

Introduction:

We are to prove that in a non-relativistic, elastic collision between two particles of equal mass,
where one is initially at rest, the angle between their velocities after collision is 90∘. This
scenario is common in atomic and nuclear physics. Assumptions:

1. Both particles have the same mass 𝑚.

2. The collision is elastic: kinetic energy and momentum are conserved.

3. The second particle is initially at rest.

4. The scattering is analyzed in the laboratory frame.

Solution:

Let the incoming particle (mass 𝑚) have an initial velocity ⃗𝑣0. The target particle (also of mass
𝑚) is initially at rest.

Let the velocities after collision be:

• ⃗𝑣1 for the incoming particle

• ⃗𝑣2 for the initially stationary particle

Conservation of Momentum:

Total momentum before collision:
⃗𝑝initial = 𝑚 ⃗𝑣0

Total momentum after collision:

⃗𝑝final = 𝑚 ⃗𝑣1 + 𝑚 ⃗𝑣2

So:
⃗𝑣0 = ⃗𝑣1 + ⃗𝑣2 (1)

Conservation of Kinetic Energy:

Total kinetic energy before collision:

𝐾initial = 1
2𝑚𝑣2

0

Total kinetic energy after collision:

𝐾final = 1
2𝑚𝑣2

1 + 1
2𝑚𝑣2

2
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So:
𝑣2

0 = 𝑣2
1 + 𝑣2

2 (2)

From equation (1), square both sides:

𝑣2
0 = | ⃗𝑣1 + ⃗𝑣2|2 = 𝑣2

1 + 𝑣2
2 + 2 ⃗𝑣1 ⋅ ⃗𝑣2

Substitute from equation (2) into this:

𝑣2
1 + 𝑣2

2 = 𝑣2
1 + 𝑣2

2 + 2 ⃗𝑣1 ⋅ ⃗𝑣2 ⇒ 2 ⃗𝑣1 ⋅ ⃗𝑣2 = 0

Therefore,
⃗𝑣1 ⋅ ⃗𝑣2 = 0

This implies that ⃗𝑣1 and ⃗𝑣2 are perpendicular. Hence, the angle between the velocities of the
two particles after collision is 90∘.

Diagram:

This vector diagram shows ⃗𝑣0 along the initial direction. After collision, ⃗𝑣1 and ⃗𝑣2 are at right
angles to each other, completing the vector triangle ⃗𝑣1 + ⃗𝑣2 = ⃗𝑣0.

Conclusion:

In an elastic, non-relativistic collision between two equal masses where one is initially at rest,
the two particles scatter at 90∘ to each other. This result follows directly from conservation of
momentum and kinetic energy.
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3 If the forces acting on a particle are conservative, show that
the total energy of the particle which is the sum of the ki-
netic and potential energies is conserved.

Introduction:

We are to show that if a particle is subjected only to conservative forces, then its total mechanical
energy—defined as the sum of its kinetic energy (𝐾) and potential energy (𝑈 )—remains con-
stant over time. A conservative force ⃗𝐹 satisfies ⃗𝐹 = −∇𝑈 , where 𝑈 is the potential energy
function. The principle of energy conservation in this context stems directly from Newton’s
second law and the definition of conservative forces.

Solution:

Let the mass of the particle be 𝑚, its position vector be ⃗𝑟(𝑡), and velocity be ⃗𝑣 = 𝑑 ⃗𝑟
𝑑𝑡 .

The kinetic energy is given by:
𝐾 = 1

2𝑚𝑣2

The time derivative of kinetic energy is:

𝑑𝐾
𝑑𝑡 = 𝑑

𝑑𝑡 (1
2𝑚𝑣2) = 𝑚 ⃗𝑣 ⋅ 𝑑 ⃗𝑣

𝑑𝑡 = ⃗𝑣 ⋅ 𝑚𝑑 ⃗𝑣
𝑑𝑡

From Newtonś second law:
𝑚𝑑 ⃗𝑣

𝑑𝑡 = ⃗𝐹

Therefore: 𝑑𝐾
𝑑𝑡 = ⃗𝑣 ⋅ ⃗𝐹

If the force ⃗𝐹 is conservative, it can be written as:

⃗𝐹 = −∇𝑈

Then: 𝑑𝐾
𝑑𝑡 = ⃗𝑣 ⋅ (−∇𝑈) = − ⃗𝑣 ⋅ ∇𝑈

The time derivative of the potential energy 𝑈 is:

𝑑𝑈
𝑑𝑡 = ∇𝑈 ⋅ 𝑑 ⃗𝑟

𝑑𝑡 = ∇𝑈 ⋅ ⃗𝑣

Therefore: 𝑑𝐾
𝑑𝑡 = −𝑑𝑈

𝑑𝑡
Add both sides: 𝑑𝐾

𝑑𝑡 + 𝑑𝑈
𝑑𝑡 = 0 ⇒ 𝑑

𝑑𝑡(𝐾 + 𝑈) = 0

7
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This implies that the total energy 𝐸 = 𝐾 + 𝑈 is constant in time.

Conclusion:

We have shown that for a particle under the influence of conservative forces, the rate of change
of kinetic energy is the negative of the rate of change of potential energy. Therefore, the total
mechanical energy 𝐸 = 𝐾 + 𝑈 remains constant. This is the mathematical statement of the
conservation of energy in conservative systems.
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4 Discuss the problem of scattering of a charged particle by
a Coulomb field. Hence, obtain an expression for Ruther-
ford scattering cross‐section. What is the importance of the
above expression?

Introduction: The scattering of a beam of charged particles (e.g. protons or 𝛼‐particles) by a
heavy, positively charged nucleus is a central problem in both classical and quantummechanics.
Although the full treatment is quantum‐mechanical, the classical analysis already reveals the
key geometric and kinematic features of the process. In the classical picture, an incident particle
of charge +𝑧𝑒 and mass 𝑚 approaches a fixed nucleus of charge +𝑍𝑒 with initial speed 𝑣0 and
straight‐line trajectory at large distance. As it draws near, it experiences a repulsive Coulomb
force, its path deviates from a straight line, and after passing by the nucleus it emerges again
along a straight line in a new direction. The angle between the incident and outgoing trajectories
is called the scattering angle 𝜙. By analyzing the relationship between the impact parameter 𝑝
and the scattering angle 𝜙, one derives the differential scattering cross‐section 𝑑𝜎/𝑑Ω, which
for a purely Coulomb (inverse‐square) force yields Rutherford’s famous formula.

Scattering cross‐section (general definitions): Let a uniform beam of particles move toward
the scattering center (the nucleus) with flux (or intensity) 𝐼0, defined as the number of particles
crossing unit area per unit time, normal to the beam direction. We assume all incident particles
have the same mass 𝑚 and same kinetic energy 𝐸 = 1

2 𝑚 𝑣2
0. Denote by 𝑑𝜎 the area element

in the plane perpendicular to the beam (the “impact‐parameter plane”) such that any particle
whose initial straight‐line path falls within 𝑑𝜎 is scattered. Let 𝑑Ω be the solid angle about a
particular scattering direction (i.e. angle 𝜙 measured from the original beam axis) into which
these particles are deflected.

If 𝐼(Ω) is the number of particles scattered per unit time into the infinitesimal solid angle 𝑑Ω
about direction Ω, then

𝐼0 𝑑𝜎 = 𝐼(Ω) 𝑑Ω ⟹ 𝑑𝜎
𝑑Ω = 𝐼(Ω)

𝐼0
(3)

is called the differential scattering cross‐section 𝜎(Ω). In other words,

𝜎(Ω) = 𝑑𝜎
𝑑Ω = (number scattered per unit time into 𝑑Ω)

(incident flux 𝐼0)
.

The total cross‐section is then

𝜎total = ∫
Ω

𝜎(Ω) 𝑑Ω = ∫
Ω

𝑑𝜎
𝑑Ω 𝑑Ω .

Scattering angle 𝜙 and impact parameter 𝑝: By definition, the scattering angle 𝜙 is the
angle between the incident direction and the outgoing direction of the particle after interaction.
The impact parameter 𝑝 is the perpendicular distance from the center of force (nucleus) to the
initial, undeviated straight‐line trajectory of the particle. Because the Coulomb force is central,
the problem has axial symmetry about the beam axis (𝑋𝑋′), and all particles with the same 𝑝
are scattered by the same angle 𝜙.

9
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In spherical coordinates about the beam axis, the solid angle element is

𝑑Ω = 2𝜋 sin𝜙 𝑑𝜙 ,

since there is full 2𝜋 azimuthal symmetry and 𝜙 ∈ [0, 𝜋] is the polar (scattering) angle.
On the other hand, particles in the incident beam whose impact parameters lie between 𝑝 and
𝑝 + 𝑑𝑝 occupy an annular ring of area

𝑑𝜎 = 2𝜋 𝑝 𝑑𝑝 in the impact‐parameter plane.

All those particles with impact in [𝑝, 𝑝 + 𝑑𝑝] are scattered into polar angles in [𝜙, 𝜙 + 𝑑𝜙].
Hence, the number of incident particles per unit time in that annular ring is

𝐼0 𝑑𝜎 = 𝐼0 (2𝜋 𝑝 𝑑𝑝) .

At the same time, the number of particles scattered per unit time into the corresponding solid
angle 𝑑Ω = 2𝜋 sin𝜙 𝑑𝜙 is

𝐼(Ω) 𝑑Ω = 𝐼(Ω) (2𝜋 sin𝜙 𝑑𝜙).

Since each ring of impact parameter 𝑝 corresponds one‐to‐one with the scattering angle 𝜙, we
set

𝐼0 (2𝜋 𝑝 𝑑𝑝) = 𝐼(Ω) (2𝜋 sin𝜙 𝑑𝜙).
But from (3) we have 𝐼(Ω) = 𝐼0 𝜎(𝜙) (here 𝜎(𝜙) = 𝜎(Ω) with Ω determined by 𝜙). Therefore,

𝐼0 (2𝜋 𝑝 𝑑𝑝) = 𝐼0 𝜎(𝜙) (2𝜋 sin𝜙 𝑑𝜙) ⟹ 2𝜋 𝑝 𝑑𝑝 = 2𝜋 𝜎(𝜙) sin𝜙 𝑑𝜙.

Solving for 𝜎(𝜙) yields
𝜎(𝜙) = 𝑝

sin𝜙 ∣ 𝑑𝑝
𝑑𝜙∣ . (4)

A minus sign sometimes appears if one writes 𝑑𝑝/𝑑𝜙 as negative (since 𝑝 decreases as 𝜙 in-
creases), but the absolute‐value form above is most common. Equation (4) is the general result
for any central potential: once you know the functional relation 𝑝(𝜙), you substitute into (4) to
obtain the differential cross‐section 𝜎(𝜙).
Coulomb scattering: determination of 𝑝(𝜙): In the special case of a repulsive Coulomb po-
tential

𝑉 (𝑟) = 𝑍 𝑧 𝑒2

4𝜋 𝜀0 𝑟 ,

one must integrate the orbit equation or use conservation laws to find 𝑝 as a function of 𝜙. A
standard derivation (by solving the orbitś differential equation in polar form) shows that the
trajectory is a hyperbola whose eccentricity 𝑒 satisfies

𝑒 = 1
sin(𝜙

2 ) ⟹ cot(𝜙
2 ) =

√
𝑒2 − 1 = 2 𝐸 𝑝 (4𝜋 𝜀0)

𝑍 𝑧 𝑒2 ,

where 𝐸 = 1
2 𝑚 𝑣2

0 is the incident kinetic energy. Hence one finds

𝑝(𝜙) = 𝑍 𝑧 𝑒2

4𝜋 𝜀0 2 𝐸 cot(𝜙
2 ) = 𝑍 𝑧 𝑒2

8𝜋 𝜀0 𝐸 cot(𝜙
2 ).
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Differentiating with respect to 𝜙 gives

𝑑𝑝
𝑑𝜙 = 𝑍 𝑧 𝑒2

8𝜋 𝜀0 𝐸 ⋅ 𝑑
𝑑𝜙[cot(𝜙

2 )] = 𝑍 𝑧 𝑒2

8𝜋 𝜀0 𝐸 (−1
2) csc2(𝜙

2 ) = − 𝑍 𝑧 𝑒2

16𝜋 𝜀0 𝐸 csc2(𝜙
2 ).

Taking the absolute value,

∣ 𝑑𝑝
𝑑𝜙∣ = 𝑍 𝑧 𝑒2

16𝜋 𝜀0 𝐸 csc2(𝜙
2 ).

Substitute 𝑝(𝜙) and |𝑑𝑝/𝑑𝜙| into the general formula (4):

𝜎(𝜙) = 𝑝(𝜙)
sin𝜙 ∣ 𝑑𝑝

𝑑𝜙∣ = 1
sin𝜙 [ 𝑍 𝑧 𝑒2

8𝜋 𝜀0 𝐸 cot(𝜙
2 )] × [ 𝑍 𝑧 𝑒2

16𝜋 𝜀0 𝐸 csc2(𝜙
2 )].

Use the identity sin𝜙 = 2 sin(𝜙
2 ) cos(𝜙

2 ) and cot(𝜙
2 ) = cos(𝜙

2 )/ sin(𝜙
2 ) to simplify:

cot(𝜙
2 )

sin𝜙 = cos(𝜙
2 )

sin(𝜙
2 )

⋅ 1
2 sin(𝜙

2 ) cos(𝜙
2 )

= 1
2 sin2(𝜙

2 ) sin(𝜙
2 ) cos(𝜙

2 )
= 1

2 sin3(𝜙
2 ) cos(𝜙

2 )
.

Multiplying by csc2(𝜙
2 ) = 1/ sin2(𝜙

2 ) yields

cot(𝜙
2 ) csc2(𝜙

2 )
sin𝜙 = 1

2 sin5(𝜙
2 ) cos(𝜙

2 )
.

Thus

𝜎(𝜙) = ( 𝑍 𝑧 𝑒2
8𝜋 𝜀0 𝐸 )( 𝑍 𝑧 𝑒2

16𝜋 𝜀0 𝐸 ) × 1
2 sin5(𝜙

2 ) cos(𝜙
2 )

= (𝑍 𝑧 𝑒2)2

256 𝜋2 𝜀2
0 𝐸2

1
sin4(𝜙

2 )
.

Equivalently, one writes the famous Rutherford differential scattering cross‐section as

𝑑𝜎
𝑑Ω = (𝑍 𝑧 𝑒2)2

256 𝜋2 𝜀2
0 𝐸2

1
sin4(𝜙

2 )
= ( 𝑍 𝑧 𝑒2

16 𝜋 𝜀0 𝐸 )
2 1

sin4(𝜙
2 )

. (5)

Importance of the Rutherford formula:

1. Evidence for a compact nuclear charge. Rutherford’s sin−4(𝜙/2) law agreed precisely
with the 𝛼‐particle scattering experiments of 1911. The observed angular distribution
could only be explained if (i) the positive charge of the atom is concentrated in a very
small nucleus, and (ii) the interatomic potential at distances ∼ 10−14–10−12 m is purely
Coulombic ∝ 1/𝑟 . This discovery overturned the “plum‐pudding” model and estab-
lished the nuclear model of the atom.

2. Dependence on charges and energy. Equation (5) shows

𝑑𝜎
𝑑Ω ∝ (𝑍 𝑧)2 1

𝐸2
1

sin4(𝜙/2)
,

so by varying the projectile energy 𝐸 or comparing targets of different nuclear charge 𝑍,
one can extract information about nuclear charge and size.

11
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3. Forward‐peaked scattering. Because sin−4(𝜙/2) diverges as 𝜙 → 0, most particles are
scattered at very small angles (“halo” of forward scattering). In practice, detectors must
be positioned at small 𝜙 to measure the bulk of scattering events.

4. Benchmark for more complex interactions. The Rutherford formula is the classical bench-
mark for pure Coulomb scattering. Deviations at small angles indicate atomic‐electron
screening; deviations at large angles indicate finite nuclear size or non‐Coulomb forces.

5. Foundation for quantum‐mechanical scattering. In quantum theory, the Rutherford re-
sult emerges in the Born approximation for high incident energies. Thus, Rutherford
scattering underpins much of modern nuclear and particle‐physics scattering analysis.

Conclusion: By analyzing a beam of charged particles scattered by a fixed nucleus via the
Coulomb force, one finds a hyperbolic trajectory whose eccentricity satisfies 𝑒 = 1/ sin(𝜙/2).
Using the relation 𝑝(𝜙) = (𝑍 𝑧 𝑒2/(8𝜋 𝜀0 𝐸)) cot(𝜙/2) and substituting into the general for-
mula 𝜎(𝜙) = (𝑝/ sin𝜙) |𝑑𝑝/𝑑𝜙|, one obtains Rutherford’s celebrated differential cross‐section
(equation (5)). Its perfect sin−4(𝜙/2) angular dependence and (𝑍 𝑧)2/𝐸2 scaling provided the
first direct evidence for a small, highly charged nucleus and set the stage for modern scattering
theory.

12
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Simplied Version

Discuss the problem of scattering of a charged particle by a
Coulomb field. Hence, obtain an expression for Rutherford
scattering cross-section. What is the importance of the above
expression?
Introduction: A charged particle (charge +𝑧𝑒, mass 𝑚) with initial velocity 𝑣0 approaches
a heavy nucleus (charge +𝑍𝑒) and is scattered by the repulsive Coulomb force. The scatter-
ing angle 𝜙 depends on the impact parameter 𝑝 (perpendicular distance from the undeviated
trajectory to the nucleus).

Scattering Cross-Section Definition: The differential scattering cross-section is defined as:

𝑑𝜎
𝑑Ω = number scattered per unit time into 𝑑Ω

incident flux 𝐼0

For axially symmetric scattering, particles with impact parameters between 𝑝 and 𝑝+𝑑𝑝 occupy
area 𝑑𝜎 = 2𝜋𝑝 𝑑𝑝 and are scattered into solid angle 𝑑Ω = 2𝜋 sin𝜙 𝑑𝜙.
From conservation of particle number:

𝐼0 ⋅ 2𝜋𝑝 𝑑𝑝 = 𝐼0 ⋅ 𝑑𝜎
𝑑Ω ⋅ 2𝜋 sin𝜙 𝑑𝜙

This gives the general relation:

𝑑𝜎
𝑑Ω = 𝑝

sin𝜙 ∣ 𝑑𝑝
𝑑𝜙∣

Coulomb Scattering Analysis: For the repulsive Coulomb potential 𝑉 (𝑟) = 𝑍𝑧𝑒2
4𝜋𝜀0𝑟 , the tra-

jectory is hyperbolic. From orbital mechanics, the impact parameter relates to scattering angle
through:

𝑝(𝜙) = 𝑍𝑧𝑒2

8𝜋𝜀0𝐸 cot(𝜙
2 )

where 𝐸 = 1
2𝑚𝑣2

0 is the incident kinetic energy.

Differentiating:

𝑑𝑝
𝑑𝜙 = 𝑍𝑧𝑒2

8𝜋𝜀0𝐸 ⋅ (−1
2) csc2 (𝜙

2 ) = − 𝑍𝑧𝑒2

16𝜋𝜀0𝐸 csc2 (𝜙
2 )

Therefore:
∣ 𝑑𝑝
𝑑𝜙∣ = 𝑍𝑧𝑒2

16𝜋𝜀0𝐸 csc2 (𝜙
2 )

13
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Rutherford Cross-Section Derivation: Substituting into the general cross-section formula:

𝑑𝜎
𝑑Ω = 𝑝

sin𝜙 ∣ 𝑑𝑝
𝑑𝜙∣

= 1
sin𝜙 ⋅ 𝑍𝑧𝑒2

8𝜋𝜀0𝐸 cot(𝜙
2 ) ⋅ 𝑍𝑧𝑒2

16𝜋𝜀0𝐸 csc2 (𝜙
2 )

= ( 𝑍𝑧𝑒2

4𝜋𝜀0𝐸 )
2

⋅ 1
8 ⋅ 16 ⋅

cot (𝜙
2 ) csc2 (𝜙

2 )
sin𝜙

Now, using the trigonometric identities: - sin𝜙 = 2 sin (𝜙
2 ) cos (𝜙

2 ) - cot (𝜙
2 ) = cos( 𝜙

2 )
sin( 𝜙

2 ) -

csc2 (𝜙
2 ) = 1

sin2( 𝜙
2 )

We get:
cot (𝜙

2 ) csc2 (𝜙
2 )

sin𝜙 =
cos (𝜙

2 ) / sin (𝜙
2 ) ⋅ 1/ sin2 (𝜙

2 )
2 sin (𝜙

2 ) cos (𝜙
2 )

=
cos (𝜙

2 )
2 sin4 (𝜙

2 ) cos (𝜙
2 )

= 1
2 sin4 (𝜙

2 )

Therefore:

𝑑𝜎
𝑑Ω = ( 𝑍𝑧𝑒2

4𝜋𝜀0𝐸 )
2

⋅ 1
128 ⋅ 1

2 sin4 (𝜙
2 )

= ( 𝑍𝑧𝑒2

16𝜋𝜀0𝐸 )
2 1
sin4 (𝜙

2 )

This yields the Rutherford differential scattering cross-section:

𝑑𝜎
𝑑Ω = ( 𝑍𝑧𝑒2

16𝜋𝜀0𝐸 )
2 1
sin4 (𝜙

2 )

Importance of the Rutherford Formula:

1. Discovery of the nucleus: The sin−4(𝜙/2) dependence precisely matched Rutherford’s
1911 𝛼-particle experiments, proving that atomic positive charge is concentrated in a
small nucleus, not distributed as in the ”plum-pudding” model.

2. Scaling relations: The formula shows 𝑑𝜎
𝑑Ω ∝ (𝑍𝑧)2/𝐸2, allowing determination of nu-

clear charges and testing energy dependencies.

3. Forward scattering dominance: The sin−4(𝜙/2) term diverges as 𝜙 → 0, indicating
most particles scatter at small angles, creating a forward ”halo” effect.

4. Benchmark for complex interactions: Deviations from the Rutherford formula reveal
electron screening (small angles) or nuclear forces (large angles), providing insight into
atomic and nuclear structure.

14
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5. Quantum mechanical foundation: The classical result emerges in the quantum Born
approximation, forming the basis for modern scattering theory in nuclear and particle
physics.

Conclusion: Rutherford scattering analysis reveals that Coulomb scattering produces a charac-
teristic sin−4(𝜙/2) angular distribution with (𝑍𝑧)2/𝐸2 scaling. This formula provided the first
direct evidence for nuclear structure and remains fundamental to understanding electromagnetic
interactions in atomic and nuclear physics.
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5 Write down precisely the conservation theorems for en-
ergy, linear momentum, and angular momentum of a par-
ticle with their mathematical forms.

Introduction: In classical mechanics, the conservation theorems for energy, linear momentum,
and angular momentum describe fundamental symmetries of nature and are pivotal in analyzing
the motion of particles. These theorems are valid under specific conditions where correspond-
ing external forces or torques are absent or conservative in nature. Below, we present each
conservation law along with its precise mathematical expression.

Solution:

Conservation of Energy:

If the net force acting on a particle is conservative, the total mechanical energy (sum of kinetic
and potential energies) of the particle remains constant over time.

Let 𝑇 denote kinetic energy and𝑈 the potential energy of the particle. Then the total mechanical
energy is

𝐸 = 𝑇 + 𝑈.
The conservation law states: 𝑑𝐸

𝑑𝑡 = 𝑑
𝑑𝑡(𝑇 + 𝑈) = 0.

Alternatively,
𝐸 = constant.

Conservation of Linear Momentum:

If the net external force acting on a particle is zero, the linear momentum ⃗𝑝 of the particle
remains constant in time.

Let ⃗𝑝 = 𝑚 ⃗𝑣, where 𝑚 is the mass and ⃗𝑣 is the velocity of the particle. Then,

⃗𝐹net = 𝑑 ⃗𝑝
𝑑𝑡 = 0 ⇒ ⃗𝑝 = constant.

Conservation of Angular Momentum:

If the net external torque acting on a particle about a fixed point (or axis) is zero, the angular
momentum �⃗� of the particle about that point (or axis) remains constant.

Angular momentum of a particle with respect to point 𝑂 is given by

�⃗� = ⃗𝑟 × ⃗𝑝 = ⃗𝑟 × 𝑚 ⃗𝑣,
where ⃗𝑟 is the position vector of the particle relative to point 𝑂.

The torque about point 𝑂 is

⃗𝜏 = 𝑑�⃗�
𝑑𝑡 .

Therefore, if ⃗𝜏net = 0, then
𝑑�⃗�
𝑑𝑡 = 0 ⇒ �⃗� = constant.

16



A/P

Solution of Mechanics PYQs ABHI PHYSICS

Conclusion:

The conservation theorems state that, in absence of non-conservative forces, external forces, or
external torques respectively:

1. Total mechanical energy (𝑇 + 𝑈 ) remains constant.

2. Linear momentum ( ⃗𝑝) remains constant if ⃗𝐹net = 0.
3. Angular momentum (�⃗�) remains constant if ⃗𝜏net = 0.

These principles are fundamental tools in solving a wide range of problems in mechanics and
underlie the symmetries of physical laws.
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6 Show that the differential scattering cross-section can be
expressed as 𝜎(𝜃) = 𝑠

sin 𝜃 ∣𝑑𝑠
𝑑𝜃∣, where 𝑠 is the impact param-

eter and 𝜃 is the scattering angle.
Introduction: In classical scattering theory, the differential scattering cross-section 𝜎(𝜃) quan-
tifies the likelihood that an incoming particle is scattered into a solid angle element 𝑑Ω centered
around scattering angle 𝜃. The relationship between the impact parameter 𝑠 and the scattering
angle 𝜃 helps us derive this expression. We assume an axially symmetric scattering center such
that azimuthal symmetry around the beam axis holds.

Solution:

Consider an incident beam of particles with uniform flux. The number of particles scattered into
a solid angle 𝑑Ω about 𝜃 equals the number of particles whose impact parameters lie between 𝑠
and 𝑠 + 𝑑𝑠.
The ring of impact parameters between 𝑠 and 𝑠 + 𝑑𝑠 corresponds to an area element:

𝑑𝐴 = 2𝜋𝑠 𝑑𝑠.

On the other hand, the number of particles scattered into solid angle 𝑑Ω = 2𝜋 sin 𝜃 𝑑𝜃 is given
by:

𝑑𝑁 = 𝐼 ⋅ 𝜎(𝜃) 𝑑Ω,
where 𝐼 is the incident flux.

Equating the two expressions for the number of scattered particles:

𝐼 ⋅ 2𝜋𝑠 𝑑𝑠 = 𝐼 ⋅ 𝜎(𝜃) ⋅ 2𝜋 sin 𝜃 𝑑𝜃.

Canceling 𝐼 and 2𝜋 from both sides:

𝑠 𝑑𝑠 = 𝜎(𝜃) sin 𝜃 𝑑𝜃.
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Solving for 𝜎(𝜃):
𝜎(𝜃) = 𝑠

sin 𝜃 ∣𝑑𝑠
𝑑𝜃 ∣ .

We use the absolute value since the function 𝑠(𝜃) may be decreasing with 𝜃, and cross-section
is physically non-negative.

Conclusion:

The differential scattering cross-section for a central force field is given by

𝜎(𝜃) = 𝑠
sin 𝜃 ∣𝑑𝑠

𝑑𝜃 ∣ ,

where 𝑠 is the impact parameter and 𝜃 is the scattering angle. This result connects the spatial
distribution of incident particles with the angular distribution of scattered particles.
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7 (i) The distance between the centres of the carbon and oxy-
gen atoms in the carbon monoxide (CO) gas molecule is
1.130 × 10−10 m. Locate the centre of mass of the molecule
relative to the carbon atom.

Introduction:

We are given the internuclear distance between the carbon and oxygen atoms in a CO molecule
as 𝑑 = 1.130 × 10−10 m. The objective is to calculate the position of the center of mass (COM)
of themolecule relative to the carbon atom, assuming a one-dimensional configuration along the
molecular axis. Let 𝑚𝐶 and 𝑚𝑂 denote the atomic masses of carbon and oxygen, respectively.

Solution:

Assume the carbon atom is at position 𝑥 = 0 and the oxygen atom is at position 𝑥 = 𝑑. The
center of mass of a two-particle system is given by:

𝑥COM = 𝑚𝐶 ⋅ 0 + 𝑚𝑂 ⋅ 𝑑
𝑚𝐶 + 𝑚𝑂

= 𝑚𝑂 ⋅ 𝑑
𝑚𝐶 + 𝑚𝑂

.

Substituting the approximate atomic masses in unified atomic mass units:

𝑚𝐶 = 12 u, 𝑚𝑂 = 16 u,

we obtain:

𝑥COM = 16
12 + 16 ⋅ 1.130 × 10−10 m = 16

28 ⋅ 1.130 × 10−10 m.

Simplifying:

𝑥COM = 4
7 ⋅ 1.130 × 10−10 m = 0.5714 ⋅ 1.130 × 10−10 m.

𝑥COM ≈ 6.448 × 10−11 m.

Conclusion:

The center of mass of the CO molecule lies approximately 6.448 × 10−11 m from the carbon
atom toward the oxygen atom along the molecular axis.
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(ii) Find the centre of mass of a homogeneous semicircular
plate of radius 𝑎.
Introduction: We are asked to determine the position of the center of mass (COM) of a homo-
geneous semicircular plate of radius 𝑎. Since the plate is homogeneous, its mass distribution is
uniform. Due to symmetry, the center of mass must lie along the vertical axis passing through
the center of the circle (i.e., the 𝑦-axis). Therefore, we only need to compute the 𝑦-coordinate
of the center of mass. The 𝑥-coordinate will be zero by symmetry.

Solution: Let us place the semicircular plate in the 𝑥𝑦-plane such that its flat edge lies along the
𝑥-axis, and the curved part lies in the upper half-plane (𝑦 ≥ 0). The equation of the semicircle
is:

𝑥2 + 𝑦2 = 𝑎2, 𝑦 ≥ 0

The center of mass coordinates for a two-dimensional plate are given by:

̄𝑥 = 1
𝐴 ∬

plate

𝑥 𝑑𝐴, ̄𝑦 = 1
𝐴 ∬

plate

𝑦 𝑑𝐴

Since the plate is symmetric about the 𝑦-axis, ̄𝑥 = 0. We now compute ̄𝑦.
We switch to polar coordinates: Let

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃, 𝑑𝐴 = 𝑟 𝑑𝑟 𝑑𝜃

For a semicircle of radius 𝑎 in the upper half-plane, the limits are:

0 ≤ 𝑟 ≤ 𝑎, 0 ≤ 𝜃 ≤ 𝜋

The total area of the semicircular plate is:

𝐴 = 1
2𝜋𝑎2

Now, compute the 𝑦-coordinate of the center of mass:

̄𝑦 = 1
𝐴 ∬

plate

𝑦 𝑑𝐴 = 1
𝐴 ∫

𝜋

0
∫

𝑎

0
(𝑟 sin 𝜃) ⋅ 𝑟 𝑑𝑟 𝑑𝜃

Simplify the integrand:

̄𝑦 = 1
𝐴 ∫

𝜋

0
sin 𝜃 ∫

𝑎

0
𝑟2 𝑑𝑟 𝑑𝜃

Compute the inner integral:

∫
𝑎

0
𝑟2 𝑑𝑟 = [𝑟3

3 ]
𝑎

0
= 𝑎3

3
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Now compute the outer integral:

∫
𝜋

0
sin 𝜃 𝑑𝜃 = [− cos 𝜃]𝜋0 = − cos𝜋 + cos 0 = 2

Putting it all together:

̄𝑦 = 1
𝐴 ⋅ (2 ⋅ 𝑎3

3 ) = 2𝑎3

3𝐴

Recall 𝐴 = 1
2𝜋𝑎2, so:

̄𝑦 = 2𝑎3

3 ⋅ 1
2𝜋𝑎2 = 4𝑎

3𝜋

Conclusion: The center of mass of a homogeneous semicircular plate of radius 𝑎 lies on the

vertical axis of symmetry at a height of
4𝑎
3𝜋 above the flat edge. Hence, the coordinates of the

center of mass are (0, 4𝑎
3𝜋) .
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8 A diatomic molecule can be considered to be made up of
two masses 𝑚1 and 𝑚2 separated by a fixed distance 𝑟. De-
rive a formula for the distance of centre of mass, 𝐶, from
mass 𝑚1. Also show that the moment of inertia about an
axis through 𝐶 and perpendicular to 𝑟 is 𝜇𝑟2 where 𝜇 =
𝑚1𝑚2

𝑚1+𝑚2
.

Introduction: We are given a diatomic molecule composed of two point masses, 𝑚1 and 𝑚2,
separated by a fixed distance 𝑟. We are to derive:

1. The distance of the center of mass (denoted 𝐶) from the mass 𝑚1.
2. The moment of inertia about an axis perpendicular to the line joining the masses and passing
through the center of mass.

We assume the system lies along the 𝑥-axis, with 𝑚1 at 𝑥 = 0 and 𝑚2 at 𝑥 = 𝑟.
Solution:

Let the distance of the center of mass from 𝑚1 be 𝑥𝐶 . By the definition of center of mass for
point masses:

𝑥𝐶 = 𝑚1 ⋅ 0 + 𝑚2 ⋅ 𝑟
𝑚1 + 𝑚2

= 𝑚2𝑟
𝑚1 + 𝑚2

So, the center of mass is located at a distance

𝑥𝐶 = 𝑚2𝑟
𝑚1 + 𝑚2

from mass 𝑚1.

Next, we compute the moment of inertia about an axis through the center of mass and perpen-
dicular to the line joining the masses.

Let 𝐼 be this moment of inertia. The perpendicular distances of the two masses from the center
of mass are:

1. For 𝑚1: 𝑥𝐶 = 𝑚2𝑟
𝑚1 + 𝑚2

2. For 𝑚2: 𝑟 − 𝑥𝐶 = 𝑟 − 𝑚2𝑟
𝑚1 + 𝑚2

= 𝑚1𝑟
𝑚1 + 𝑚2

Hence, the moment of inertia is:

𝐼 = 𝑚1𝑥2
𝐶 + 𝑚2(𝑟 − 𝑥𝐶)2 = 𝑚1 ( 𝑚2𝑟

𝑚1 + 𝑚2
)

2
+ 𝑚2 ( 𝑚1𝑟

𝑚1 + 𝑚2
)

2

Factor out 𝑟2:

𝐼 = 𝑟2 [𝑚1 ( 𝑚2
𝑚1 + 𝑚2

)
2

+ 𝑚2 ( 𝑚1
𝑚1 + 𝑚2

)
2
]
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Simplify the expression inside the brackets:

𝐼 = 𝑟2 ⋅ 1
(𝑚1 + 𝑚2)2 [𝑚1𝑚2

2 + 𝑚2𝑚2
1] = 𝑟2 ⋅ 𝑚1𝑚2(𝑚1 + 𝑚2)

(𝑚1 + 𝑚2)2

Cancel one factor of (𝑚1 + 𝑚2):

𝐼 = 𝑟2 ⋅ 𝑚1𝑚2
𝑚1 + 𝑚2

Thus, the moment of inertia about the center of mass is:

𝐼 = 𝜇𝑟2 where 𝜇 = 𝑚1𝑚2
𝑚1 + 𝑚2

Conclusion: The distance of the center of mass from mass 𝑚1 is
𝑚2𝑟

𝑚1 + 𝑚2
. The moment of

inertia about an axis perpendicular to the line joining the two masses and passing through the
center of mass is 𝜇𝑟2, where 𝜇 = 𝑚1𝑚2

𝑚1 + 𝑚2
is the reduced mass.
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9 A ball moving with a speed of 9 m/s strikes an identical
stationary ball such that after the collision the direction of
each ball makes an angle 30∘ with the original line of mo-
tion. Find the speed of the balls after the collision. Is the
kinetic energy conserved in this collision?

Introduction: We have a collision between two identical balls where a moving ball (9 m/s)
strikes a stationary ball. After collision, both balls move at 30∘ angles to the original direction.
This is a classic two-dimensional collision problem that requires applying conservation laws.

Given Information:

• Initial velocity of ball 1: 𝑣1 = 9m/s (along positive 𝑥-axis)
• Initial velocity of ball 2: 𝑣2 = 0m/s (stationary)

• Final directions: Both balls at 30∘ to original line of motion

• Balls are identical (equal mass 𝑚)

Solution: We will solve this problem using the principle of conservation of momentum, then
check energy conservation to determine the nature of the collision.

Before Collision

𝑥

𝑦

𝑂
𝑚

⃗𝑣1 = 9 m/s

Ball 1

𝑚

Ball 2

⃗𝑣2 = 0

After Collision

𝑥

𝑦

𝑂
Contact

𝑚⃗𝑣′
1

𝑣′ = 3
√

3 m/s

𝑚⃗𝑣′
2 𝑣′ = 3

√
3 m/s

30°
30°

Initial momentum: ⃗𝑃𝑖 = 9𝑚 ̂𝑖 Final momentum: ⃗𝑃𝑓 = 9𝑚 ̂𝑖 (conserved)
Initial KE: 𝐾𝐸𝑖 = 40.5𝑚 J Final KE: 𝐾𝐸𝑓 = 27𝑚 J (not conserved)

Let the original direction of motion be the positive 𝑥-axis. The initial velocity vectors are:

⃗𝑣1 = 9 ̂𝑖 and ⃗𝑣2 = 0

After collision, the velocity vectors are:

⃗𝑣′
1 = 𝑣′(cos 30∘ ̂𝑖 + sin 30∘ ̂𝑗) = 𝑣′ (

√
3

2
̂𝑖 + 1

2
̂𝑗)

⃗𝑣′
2 = 𝑣′(cos(−30∘) ̂𝑖 + sin(−30∘) ̂𝑗) = 𝑣′ (

√
3

2
̂𝑖 − 1

2
̂𝑗)

The total momentum must be conserved in both 𝑥 and 𝑦 directions.
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Initial momentum components:

𝑃𝑥,𝑖 = 𝑚 ⋅ 9 + 𝑚 ⋅ 0 = 9𝑚

𝑃𝑦,𝑖 = 𝑚 ⋅ 0 + 𝑚 ⋅ 0 = 0

Final momentum components:

𝑃𝑥,𝑓 = 𝑚𝑣′ cos(30∘) + 𝑚𝑣′ cos(30∘) = 2𝑚𝑣′ cos(30∘) = 2𝑚𝑣′ ⋅
√

3
2 = 𝑚𝑣′√3

𝑃𝑦,𝑓 = 𝑚𝑣′ sin(30∘) + 𝑚𝑣′ sin(−30∘) = 𝑚𝑣′ (1
2) + 𝑚𝑣′ (−1

2) = 0

Note that the 𝑦-component is automatically conserved due to symmetry.

Applying conservation in the 𝑥-direction:

𝑃𝑥,𝑖 = 𝑃𝑥,𝑓

9𝑚 = 𝑚𝑣′√3

Canceling mass 𝑚 from both sides:
9 = 𝑣′√3

Solving for the final speed:

𝑣′ = 9√
3 = 9

√
3

3 = 3
√

3m/s

To determine if this is an elastic or inelastic collision, we compare initial and final kinetic en-
ergies.

Initial kinetic energy:

𝐾𝐸𝑖 = 1
2𝑚𝑣2

1 + 1
2𝑚𝑣2

2 = 1
2𝑚(9)2 + 1

2𝑚(0)2 = 81𝑚
2 = 40.5𝑚

Hence, the Final kinetic energy: Since both balls have the same final speed 𝑣′ = 3
√

3 m/s:

𝐾𝐸𝑓 = 1
2𝑚(𝑣′)2 + 1

2𝑚(𝑣′)2 = 2 × 1
2𝑚(3

√
3)2 = 𝑚(3

√
3)2

𝐾𝐸𝑓 = 𝑚 × 9 × 3 = 27𝑚

Energy comparison:
𝐾𝐸𝑖 = 40.5𝑚 and 𝐾𝐸𝑓 = 27𝑚

Since 𝐾𝐸𝑓 < 𝐾𝐸𝑖, kinetic energy is not conserved. The difference represents energy lost to
deformation, heat, sound, etc.

Conclusion: The fact that kinetic energy decreases (from 40.5m to 27m) indicates that this is
an inelastic collision. Some of the initial kinetic energy has been converted to other forms of
energy during the collision process.
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10 (i) If a particle of mass 𝑚 is in a central force field 𝑓(𝑟) ̂𝑟,
then show that its path must be a plane curve, where ̂𝑟 is
a unit vector in the direction of position vector ⃗𝑟.

Introduction: We are asked to show that the motion of a particle of mass 𝑚 under the influence
of a central force ⃗𝐹 = 𝑓(𝑟) ̂𝑟 lies in a plane. Here, 𝑓(𝑟) is a scalar function depending only on
the distance 𝑟 = | ⃗𝑟| from a fixed point (typically the origin), and ̂𝑟 is the radial unit vector in
the direction of the position vector ⃗𝑟. This is a general result in classical mechanics concerning
central forces.

Solution:

Let ⃗𝑟(𝑡) be the position vector of the particle at time 𝑡, and let ⃗𝐹 be the force acting on the
particle. Then Newton’s second law gives:

𝑚 ̈⃗𝑟 = ⃗𝐹 = 𝑓(𝑟) ̂𝑟

The defining property of a central force is that it is directed along the radial direction ̂𝑟, i.e., it
has no component perpendicular to ⃗𝑟.
Let us define the angular momentum of the particle about the origin:

�⃗� = ⃗𝑟 × 𝑚 ⃗𝑣 = 𝑚 ⃗𝑟 × ̇⃗𝑟

Differentiate �⃗� with respect to time:

𝑑�⃗�
𝑑𝑡 = 𝑚 𝑑

𝑑𝑡( ⃗𝑟 × ̇⃗𝑟) = 𝑚( ̇⃗𝑟 × ̇⃗𝑟 + ⃗𝑟 × ̈⃗𝑟) = 𝑚 ⃗𝑟 × ̈⃗𝑟

Since ⃗𝐹 = 𝑚 ̈⃗𝑟 = 𝑓(𝑟) ̂𝑟 is parallel to ⃗𝑟, the cross product ⃗𝑟 × ̈⃗𝑟 = 0.
Therefore:

𝑑�⃗�
𝑑𝑡 = 0 ⇒ �⃗� = constant vector

This shows that angular momentum is conserved in both magnitude and direction.

Since �⃗� is constant in direction, it defines a fixed plane perpendicular to �⃗� in which both ⃗𝑟 and
⃗𝑣 must lie for all time (because ⃗𝑟 × ⃗𝑣 remains parallel to �⃗�).

Hence, the motion of the particle is confined to a fixed plane.

Conclusion: The angular momentum vector �⃗� of the particle remains constant in a central force
field, implying that the motion is confined to a plane perpendicular to �⃗�. Thus, the path of a
particle under a central force ⃗𝐹 = 𝑓(𝑟) ̂𝑟 must lie in a plane.
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(ii) A block of mass 𝑚 having negligible dimension is sliding
freely in x-direction with velocity ⃗𝑣 = 𝑣 ̂𝑖 as shown in the dia-
gram. What is its angular momentum �⃗�𝑂 about origin O and
its angular momentum �⃗�𝐴 about the point A on y-axis?

Introduction: We are given a point-like block of mass 𝑚 moving with a velocity ⃗𝑣 = 𝑣 ̂𝑖 along
the 𝑥-axis.
We are to determine its angular momentum:

1. �⃗�𝑂 about the origin 𝑂.

2. �⃗�𝐴 about a point 𝐴 located on the 𝑦-axis.
Assume the position of the particle at a particular instant is ⃗𝑟 = 𝑥 ̂𝑖 + 𝑦 ̂𝑗. The general definition
of angular momentum of a particle about a point 𝑃 is:

�⃗�𝑃 = ⃗𝑟𝑃 × ⃗𝑝

where ⃗𝑟𝑃 is the position vector of the particle relative to point 𝑃 , and ⃗𝑝 = 𝑚 ⃗𝑣 is its linear
momentum.

Solution:

Angular momentum about the origin 𝑂:

Let the position vector of the particle be:

⃗𝑟𝑂 = 𝑥 ̂𝑖 + 𝑦 ̂𝑗

The velocity is ⃗𝑣 = 𝑣 ̂𝑖, so the momentum is:

⃗𝑝 = 𝑚𝑣 ̂𝑖

Now compute �⃗�𝑂:

�⃗�𝑂 = ⃗𝑟𝑂 × ⃗𝑝 = (𝑥 ̂𝑖 + 𝑦 ̂𝑗) × (𝑚𝑣 ̂𝑖) = 𝑥 ̂𝑖 × 𝑚𝑣 ̂𝑖 + 𝑦 ̂𝑗 × 𝑚𝑣 ̂𝑖

Recall cross product identities:

• ̂𝑖 × ̂𝑖 = 0
• ̂𝑗 × ̂𝑖 = −�̂�

Then:
�⃗�𝑂 = 0 + 𝑦𝑚𝑣(−�̂�) = −𝑚𝑣𝑦�̂�

Angular momentum about point 𝐴 on the 𝑦-axis:
Let point 𝐴 have coordinates (0, 𝑦0). The position vector of the particle relative to point 𝐴 is:

⃗𝑟𝐴 = ⃗𝑟 − ⃗𝑟 (position)
𝐴 = (𝑥 ̂𝑖 + 𝑦 ̂𝑗) − (0 ̂𝑖 + 𝑦0 ̂𝑗) = 𝑥 ̂𝑖 + (𝑦 − 𝑦0) ̂𝑗
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Then compute:
�⃗�𝐴 = ⃗𝑟𝐴 × ⃗𝑝 = (𝑥 ̂𝑖 + (𝑦 − 𝑦0) ̂𝑗) × (𝑚𝑣 ̂𝑖)

Again,

�⃗�𝐴 = 𝑥 ̂𝑖 × 𝑚𝑣 ̂𝑖 + (𝑦 − 𝑦0) ̂𝑗 × 𝑚𝑣 ̂𝑖 = 0 + (𝑦 − 𝑦0)(−𝑚𝑣�̂�) = −𝑚𝑣(𝑦 − 𝑦0)�̂�

Conclusion: The angular momenta of the block are:

• About origin 𝑂: �⃗�𝑂 = −𝑚𝑣𝑦 �̂�

• About point 𝐴 on the 𝑦-axis at height 𝑦0: �⃗�𝐴 = −𝑚𝑣(𝑦 − 𝑦0) �̂�
In both cases, the angular momentum vector is directed along the 𝑧-axis.
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