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31 Suppose an 𝑆′ frame is rotating with respect to a fixed
frame having the same origin. Assume that the angular
velocity 𝜔⃗ of the 𝑆′-frame is given by 𝜔⃗ = 2𝑡 ̂𝑖− 𝑡2 ̂𝑗 + (2𝑡+
4)𝑘̂, where 𝑡 is time. The position vector ⃗𝑟 of a particle in
𝑆′ at time 𝑡 is ⃗𝑟 = (𝑡2 + 1) ̂𝑖 − 6𝑡 ̂𝑗 + 4𝑡3𝑘̂. Calculate the
Coriolis acceleration at 𝑡 = 1 second.

Introduction: In this problem, we are given a rotating frame 𝑆′ with angular velocity 𝜔⃗ relative
to an inertial frame. The angular velocity is time-dependent, and the position vector ⃗𝑟 of a
particle is given as a function of time in the rotating frame. We are to compute the Coriolis
acceleration at time 𝑡 = 1 s. The Coriolis acceleration is given by the standard expression in
non-inertial rotating frames:

⃗𝑎Coriolis = −2𝜔⃗ × ⃗𝑣rel,
where ⃗𝑣rel = 𝑑 ⃗𝑟

𝑑𝑡 is the velocity of the particle in the rotating frame.

Solution: We begin by computing the relative velocity ⃗𝑣rel by differentiating the given position
vector with respect to time:

⃗𝑟(𝑡) = (𝑡2 + 1) ̂𝑖 − 6𝑡 ̂𝑗 + 4𝑡3𝑘̂,

so
⃗𝑣rel = 𝑑 ⃗𝑟

𝑑𝑡 = 2𝑡 ̂𝑖 − 6 ̂𝑗 + 12𝑡2𝑘̂.
At 𝑡 = 1 second, we evaluate:

⃗𝑣rel(1) = 2(1) ̂𝑖 − 6 ̂𝑗 + 12(1)2𝑘̂
= 2 ̂𝑖 − 6 ̂𝑗 + 12𝑘̂.

Next, evaluate the angular velocity at 𝑡 = 1:

𝜔⃗(𝑡) = 2𝑡 ̂𝑖 − 𝑡2 ̂𝑗 + (2𝑡 + 4)𝑘̂,
𝜔⃗(1) = 2 ̂𝑖 − 1 ̂𝑗 + 6𝑘̂.

Now compute the Coriolis acceleration:

⃗𝑎Coriolis = −2𝜔⃗ × ⃗𝑣rel.

Compute the cross product:

𝜔⃗ × ⃗𝑣rel = ∣
̂𝑖 ̂𝑗 𝑘̂

2 −1 6
2 −6 12

∣

= ̂𝑖((−1)(12) − (6)(−6)) − ̂𝑗((2)(12) − (6)(2)) + 𝑘̂((2)(−6) − (−1)(2))
= ̂𝑖(−12 + 36) − ̂𝑗(24 − 12) + 𝑘̂(−12 + 2)
= 24 ̂𝑖 − 12 ̂𝑗 − 10𝑘̂.
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Therefore,

⃗𝑎Coriolis = −2(24 ̂𝑖 − 12 ̂𝑗 − 10𝑘̂)
= −48 ̂𝑖 + 24 ̂𝑗 + 20𝑘̂.

Conclusion: The Coriolis acceleration of the particle at 𝑡 = 1 s is given by:

⃗𝑎Coriolis = −48 ̂𝑖 + 24 ̂𝑗 + 20𝑘̂ (in SI units, m/s2).

This acceleration arises due to the rotation of the reference frame and its magnitude and direction
are influenced both by the angular velocity vector and the relative velocity of the particle within
the rotating frame.
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32 Calculate the horizontal component of the Coriolis force
acting on a body of mass 0.1 kg moving northward with a
horizontal velocity of 100 m/s at 30∘𝑁 latitude on Earth.

Introduction: We are asked to compute the horizontal component of the Coriolis force acting
on a body of mass 𝑚 = 0.1 kg that is moving northward with a speed of 𝑣 = 100m/s at a
geographic latitude of 30∘ north. The Coriolis force is given by:

⃗𝐹Coriolis = −2𝑚Ω⃗ × ⃗𝑣,

where Ω⃗ is the angular velocity vector of Earth and ⃗𝑣 is the velocity of the object in the rotating
Earth frame. We are interested in the horizontal component of this force, which corresponds to
the eastward deflection due to northward motion.

Solution: The angular velocity of Earth is:

Ω = 7.292 × 10−5 rad/s.

Let us denote:

• 𝜙 = 30∘ as the latitude,

• ⃗𝑣 = 𝑣 ̂𝑗 as northward velocity (assuming a local coordinate system where ̂𝑖 is east, ̂𝑗 is
north, and 𝑘̂ is up).

In this coordinate system, the angular velocity vector of Earth is:

Ω⃗ = Ω cos𝜙 ̂𝑗 + Ω sin𝜙𝑘̂.

We compute the Coriolis acceleration using:

⃗𝑎Coriolis = −2Ω⃗ × ⃗𝑣.

Substituting ⃗𝑣 = 𝑣 ̂𝑗 and noting that ̂𝑗 × ̂𝑗 = 0:

Ω⃗ × ⃗𝑣 = (Ω cos𝜙 ̂𝑗 + Ω sin𝜙𝑘̂) × (𝑣 ̂𝑗)
= Ω cos𝜙 ̂𝑗 × 𝑣 ̂𝑗 + Ω sin𝜙𝑘̂ × 𝑣 ̂𝑗
= 0 + Ω𝑣 sin𝜙(𝑘̂ × ̂𝑗)
= −Ω𝑣 sin𝜙 ̂𝑖.

Thus,
⃗𝑎Coriolis = −2Ω⃗ × ⃗𝑣 = 2Ω𝑣 sin𝜙 ̂𝑖.

Now compute the Coriolis force:

𝐹Coriolis, horiz = 𝑚 ⋅ 𝑎Coriolis = 2𝑚Ω𝑣 sin𝜙.
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Substitute numerical values:

𝐹Coriolis, horiz = 2 ⋅ 0.1 kg ⋅ (7.292 × 10−5 rad/s) ⋅ 100m/s ⋅ sin(30∘)
= 0.2 ⋅ 7.292 × 10−5 ⋅ 100 ⋅ 0.5
= 7.292 × 10−4 N.

Conclusion: The horizontal component of the Coriolis force acting on the body is approxi-
mately:

𝐹Coriolis, horiz = 7.292 × 10−4 N (eastward direction).
This force causes a small but measurable eastward deflection of northward-moving objects on
the rotating Earth.
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33 Derive the expression for Coriolis force and show that this
force is perpendicular to the velocity and to the axis of
rotation. What is the nature of this force?

Introduction: The Coriolis force arises in a rotating frame of reference and affects the motion
of objects moving within such a frame. It is an apparent or fictitious force due to the non-inertial
nature of the rotating system. The goal here is to derive the mathematical expression for the
Coriolis force and demonstrate that it is always perpendicular to both the velocity of the object
and the axis of rotation. We also aim to describe the nature (type and properties) of this force.

Solution: Consider a non-inertial frame 𝑆′ rotating with angular velocity vector Ω⃗ relative to
an inertial frame 𝑆. Let a particle have a position vector ⃗𝑟 and a velocity ⃗𝑣rel as measured in the
rotating frame.

The total acceleration of the particle as seen from the inertial frame is:

⃗𝑎abs = (𝑑 ⃗𝑣
𝑑𝑡 )

inertial
.

In a rotating frame, this is related to the observed acceleration in the rotating frame by:

⃗𝑎abs = ⃗𝑎rel + 2Ω⃗ × ⃗𝑣rel + Ω⃗ × (Ω⃗ × ⃗𝑟) + 𝑑Ω⃗
𝑑𝑡 × ⃗𝑟,

where:

(i) ⃗𝑎rel = (𝑑 ⃗𝑣
𝑑𝑡 )

rot
is the acceleration in the rotating frame,

(ii) 2Ω⃗ × ⃗𝑣rel is the Coriolis acceleration,
(iii) Ω⃗ × (Ω⃗ × ⃗𝑟) is the centrifugal acceleration,
(iv) 𝑑Ω⃗

𝑑𝑡 × ⃗𝑟 is the Euler acceleration (present if Ω⃗ is time-dependent).

We isolate the Coriolis acceleration term, which leads to the Coriolis force:

⃗𝐹Coriolis = −2𝑚Ω⃗ × ⃗𝑣rel.

Now let us analyze its direction. The cross product Ω⃗ × ⃗𝑣rel is by definition perpendicular to
both Ω⃗ and ⃗𝑣rel. Hence,

⃗𝐹Coriolis ⟂ Ω⃗, ⃗𝐹Coriolis ⟂ ⃗𝑣rel.

This is a fundamental property of the cross product: the resulting vector lies in a direction
orthogonal to both operands.

To illustrate this geometrically:

• Let ⃗𝑣rel be a velocity vector tangent to the particle’s path.
• Let Ω⃗ represent the angular velocity vector of the rotating frame (aligned with the axis of
rotation).
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• Then ⃗𝐹Coriolis = −2𝑚Ω⃗ × ⃗𝑣rel points in a direction perpendicular to the plane formed by
Ω⃗ and ⃗𝑣rel.

Nature of the Coriolis Force:

(a) It is a fictitious or inertial force, arising due to the non-inertial nature of the rotating
frame.

(b) It does not do work since it is always perpendicular to the velocity of the object.

(c) It alters the trajectory of the object, causing a deflection (to the right in the northern
hemisphere and to the left in the southern hemisphere on Earth).

(d) It is proportional to the mass of the object, the speed in the rotating frame, and the angular
speed of the rotation.

Conclusion: The Coriolis force is given by:

⃗𝐹Coriolis = −2𝑚Ω⃗ × ⃗𝑣rel.

It acts perpendicular to both the velocity vector ⃗𝑣rel and the axis of rotation Ω⃗, and is a fictitious
force present in rotating frames. While it does not do work, it significantly influences motion
in geophysical and astrophysical systems.
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34 Consider two frames of reference 𝑆 and 𝑆′ having a com-
mon origin 𝑂. The frame 𝑆′ is rotating with respect to
the fixed frame 𝑆 with uniform 𝜔⃗ = 3 ̂𝑎𝑥 rad/s. A projec-
tile of unit mass at position ⃗𝑟 = 7 ̂𝑎𝑥 + 4 ̂𝑎𝑦 m is moving
with ⃗𝑣 = 14 ̂𝑎𝑥 m/s. Calculate in the rotating frame 𝑆′

the following forces on the projectile: (i) Euler’s force (ii)
Coriolis force (iii) Centrifugal force.

Introduction: We are given two frames of reference: an inertial frame 𝑆 and a rotating frame
𝑆′ with a common origin. The rotating frame has a constant angular velocity 𝜔⃗ = 3 ̂𝑎𝑥 rad/s.
A projectile of unit mass (𝑚 = 1) is located at position ⃗𝑟 = 7 ̂𝑎𝑥 + 4 ̂𝑎𝑦 m with velocity ⃗𝑣 =
14 ̂𝑎𝑥 m/s in the inertial frame.

We are to calculate the following fictitious forces acting on the projectile in the rotating frame
𝑆′:

(i) Euler’s force: −𝑚 𝑑𝜔⃗
𝑑𝑡 × ⃗𝑟,

(ii) Coriolis force: −2𝑚 𝜔⃗ × ⃗𝑣rel,
(iii) Centrifugal force: −𝑚 𝜔⃗ × (𝜔⃗ × ⃗𝑟).
Solution:

Given: 𝑚 = 1 kg (unit mass) 𝜔⃗ = 3 ̂𝑎𝑥 rad/s ⃗𝑟 = 7 ̂𝑎𝑥 + 4 ̂𝑎𝑦 m ⃗𝑣 = 14 ̂𝑎𝑥 m/s

(i) Euler’s Force: The Euler’s force is given by ⃗𝐹Euler = −𝑚 𝑑𝜔⃗
𝑑𝑡 × ⃗𝑟. Since the angular velocity

𝜔⃗ is uniform (constant), its time derivative is zero:

𝑑𝜔⃗
𝑑𝑡 = 𝑑

𝑑𝑡(3 ̂𝑎𝑥) = 0.

Therefore,
⃗𝐹Euler = −𝑚 (0) × ⃗𝑟 = ⃗0.

(ii) Coriolis Force: The Coriolis force is given by ⃗𝐹Coriolis = −2𝑚𝜔⃗ × ⃗𝑣rel. First, we need to
find the velocity of the particle in the rotating frame, ⃗𝑣rel. The relationship between velocities
in the inertial and rotating frames is:

⃗𝑣 = ⃗𝑣rel + 𝜔⃗ × ⃗𝑟.

So,
⃗𝑣rel = ⃗𝑣 − (𝜔⃗ × ⃗𝑟).

Let’s calculate 𝜔⃗ × ⃗𝑟:

𝜔⃗ × ⃗𝑟 = (3 ̂𝑎𝑥) × (7 ̂𝑎𝑥 + 4 ̂𝑎𝑦)
= (3 × 7)( ̂𝑎𝑥 × ̂𝑎𝑥) + (3 × 4)( ̂𝑎𝑥 × ̂𝑎𝑦)
= 0 + 12 ̂𝑎𝑧
= 12 ̂𝑎𝑧.
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Now, substitute this into the expression for ⃗𝑣rel:

⃗𝑣rel = 14 ̂𝑎𝑥 − 12 ̂𝑎𝑧.

Next, calculate 𝜔⃗ × ⃗𝑣rel:

𝜔⃗ × ⃗𝑣rel = (3 ̂𝑎𝑥) × (14 ̂𝑎𝑥 − 12 ̂𝑎𝑧)
= (3 × 14)( ̂𝑎𝑥 × ̂𝑎𝑥) − (3 × 12)( ̂𝑎𝑥 × ̂𝑎𝑧)
= 0 − 36(− ̂𝑎𝑦)
= 36 ̂𝑎𝑦.

Finally, calculate the Coriolis force:

⃗𝐹Coriolis = −2𝑚(𝜔⃗ × ⃗𝑣rel) = −2(1)(36 ̂𝑎𝑦) = −72 ̂𝑎𝑦 N.

(iii) Centrifugal Force: The Centrifugal force is given by ⃗𝐹centrifugal = −𝑚 𝜔⃗ × (𝜔⃗ × ⃗𝑟). We
have already calculated 𝜔⃗ × ⃗𝑟 = 12 ̂𝑎𝑧. Now, calculate 𝜔⃗ × (𝜔⃗ × ⃗𝑟):

𝜔⃗ × (𝜔⃗ × ⃗𝑟) = (3 ̂𝑎𝑥) × (12 ̂𝑎𝑧)
= (3 × 12)( ̂𝑎𝑥 × ̂𝑎𝑧)
= 36(− ̂𝑎𝑦)
= −36 ̂𝑎𝑦.

Finally, calculate the Centrifugal force:

⃗𝐹centrifugal = −𝑚 𝜔⃗ × (𝜔⃗ × ⃗𝑟) = −(1)(−36 ̂𝑎𝑦) = 36 ̂𝑎𝑦 N.

Conclusion: The fictitious forces acting on the unit mass projectile in the rotating frame 𝑆′ are:

• Euler’s Force: ⃗𝐹Euler = ⃗0,
• Coriolis Force: ⃗𝐹Coriolis = −72 ̂𝑎𝑦 N,

• Centrifugal Force: ⃗𝐹centrifugal = 36 ̂𝑎𝑦 N.
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35 A uniform solid sphere of radius 𝑅 having moment of in-
ertia 𝐼 about its diameter is melted to form a uniform disc
of thickness 𝑡 and radius 𝑟. The moment of inertia of the
disc about an axis passing through its edge and perpendic-
ular to the plane is also equal to 𝐼 . Show that the radius 𝑟
of the disc is given by 𝑟 = 2𝑅√

15.

Introduction: We are given a uniform solid sphere of radius 𝑅 with moment of inertia 𝐼 about
its diameter. This sphere is melted and recast into a uniform disc of radius 𝑟 and thickness 𝑡.
The moment of inertia of the disc about an axis passing through its edge and perpendicular to
the plane is also 𝐼 . We are to find the radius 𝑟 in terms of 𝑅 and show that 𝑟 = 2𝑅√

15 . The total
mass remains conserved during the transformation.

Solution:

Step 1: Moment of inertia of solid sphere about its diameter

Let the mass of the sphere be 𝑀 . The moment of inertia of a uniform solid sphere about its
diameter is:

𝐼 = 2
5𝑀𝑅2. (1)

Step 2: Mass conservation

Let the density of the material be 𝜌.
Volume of the sphere:

𝑉sphere = 4
3𝜋𝑅3 ⇒ 𝑀 = 𝜌 ⋅ 4

3𝜋𝑅3. (2)

Volume of the disc:
𝑉disc = 𝜋𝑟2𝑡 ⇒ 𝑀 = 𝜌 ⋅ 𝜋𝑟2𝑡. (3)

Equating (2) and (3):
𝜌 ⋅ 4

3𝜋𝑅3 = 𝜌 ⋅ 𝜋𝑟2𝑡 ⇒ 4
3𝑅3 = 𝑟2𝑡. (4)

Step 3: Moment of inertia of the disc about an axis through its edge and perpendicular to
the plane

The moment of inertia of a uniform disc of mass 𝑀 and radius 𝑟 about an axis perpendicular to
its plane and passing through its edge is given by:

𝐼 = 𝐼center + 𝑀𝑟2 = 1
2𝑀𝑟2 + 𝑀𝑟2 = 3

2𝑀𝑟2. (5)

Equating this to the sphere’s moment of inertia from (1):

3
2𝑀𝑟2 = 2

5𝑀𝑅2. (6)
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Cancel 𝑀 on both sides: 3
2𝑟2 = 2

5𝑅2 ⇒ 𝑟2 = 4
15𝑅2. (7)

Taking square root:
𝑟 = 2𝑅√

15.

Conclusion: The radius 𝑟 of the disc formed by melting a solid sphere of radius𝑅 and recasting
it into a uniform disc such that the moment of inertia of the disc about an axis through its edge
perpendicular to the plane equals that of the original sphere about its diameter is:

𝑟 = 2𝑅√
15.

This result follows from conservation of mass and standard expressions for the moment of
inertia of a solid sphere and a disc.

The original UPSC questions was to show that the radius 𝑟 of the disc is given by 𝑟 = 2𝑅. But
in all mathematical certainty that was wrong or typographical error. If you feel otherwise, let
me know at email abhksinhaphy@gmail.com
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36 What are Eulerian angles? A body with rotational sym-
metry about an axis is rotating under gravity about a point
on the axis without friction. What quantities remain con-
stant during the motion? Express them in terms of suit-
able Eulerian angles. Explain ’precession’ and ’nutation’
of such a body.

Introduction: Eulerian angles are a set of three angles that describe the orientation of a rigid
body with respect to a fixed coordinate system. They are crucial in the study of the dynamics
of rotating bodies. In this problem, we examine a rigid body (such as a symmetric top) with
rotational symmetry about one axis, rotating under gravity about a fixed point on the axis of
symmetry. We are to identify the conserved quantities during this motion, express them using
Euler angles, and explain the phenomena of precession and nutation.

Solution:

Eulerian Angles:

Euler angles (𝜙, 𝜃, 𝜓) describe the orientation of a rotating body relative to a fixed coordinate
system through three successive rotations:

(i) 𝜙 (precession angle): rotation about the fixed 𝑧-axis.
(ii) 𝜃 (nutation angle): inclination of the body’s symmetry axis with respect to the vertical

(𝑧-axis).
(iii) 𝜓 (spin angle): rotation about the body’s own symmetry axis.

These angles specify the transformation from the inertial frame to the body-fixed frame.

System Description:

Consider a symmetric top with moment of inertia 𝐼1 = 𝐼2 ≠ 𝐼3 about its principal axes. The
body rotates about a fixed point (e.g., the tip) on its axis of symmetry in the presence of gravity.
The center of mass lies on the symmetry axis at a distance 𝑙 from the fixed point.

Let:

• 𝑀 be the mass of the body,

• 𝑔 be the acceleration due to gravity,

• 𝐼1, 𝐼3 be the moments of inertia (about perpendicular and symmetry axes, respectively),

• 𝜃 be the angle between the symmetry axis and the vertical.
Constants of Motion:

In the absence of friction and external torques at the fixed point, the following quantities are
conserved:

(i) Total mechanical energy: The total energy includes rotational kinetic energy and gravita-
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tional potential energy:

𝐸 = 𝑇 + 𝑈 = 1
2𝐼1( ̇𝜃2 + ̇𝜙2 sin2 𝜃) + 1

2𝐼3( ̇𝜓 + ̇𝜙 cos 𝜃)2 + 𝑀𝑔𝑙 cos 𝜃. (1)

(ii) Component of angular momentum along the vertical (inertial 𝑧-axis): The projection
of the angular momentum on the vertical axis is conserved:

𝐿𝑧 = 𝐼1 ̇𝜙 sin2 𝜃 + 𝐼3( ̇𝜓 + ̇𝜙 cos 𝜃) cos 𝜃 = constant. (2)

(iii) Component of angular momentum along the symmetry axis: Since the body is sym-
metric and no torque acts along the symmetry axis,

𝐿3 = 𝐼3( ̇𝜓 + ̇𝜙 cos 𝜃) = constant. (3)

Precession and Nutation:

Precession: It is the slow rotation of the symmetry axis of the top around the vertical axis (the
𝑧-axis). Mathematically, it corresponds to the time evolution of the angle 𝜙(𝑡):

̇𝜙 = precession angular velocity.

This describes how the projection of the symmetry axis rotates in the horizontal plane.

Nutation: This is the oscillatory motion of the inclination angle 𝜃(𝑡). While precession corre-
sponds to the ”sweeping” of the top’s axis around the vertical, nutation represents the periodic
”nodding” motion of the symmetry axis due to changes in 𝜃. Nutation occurs when the vertical
component of angular momentum remains fixed but the inclination 𝜃 varies with time.
Summary of Dynamics:

• 𝜙(𝑡) increases steadily: precession.
• 𝜃(𝑡) oscillates: nutation.
• 𝜓(𝑡) evolves due to spin around the symmetry axis.

Conclusion: Eulerian angles (𝜙, 𝜃, 𝜓) provide a complete description of the orientation of a
rigid body in three dimensions. For a symmetric top rotating under gravity about a frictionless
point:

(i) Total energy 𝐸 is conserved,

(ii) Angular momentum component along vertical (𝐿𝑧) is conserved,

(iii) Angular momentum along symmetry axis (𝐿3) is conserved.

Precession is the steady rotation of the symmetry axis about the vertical, and nutation is the
oscillation of the inclination angle 𝜃 of the symmetry axis.
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37 A rigid body is rotating about a fixed point with angular
velocity 𝜔⃗. Assuming the coordinate axes coincide with
the principal axes, if 𝑇 is the kinetic energy and ⃗𝐺 is the
external torque acting on the body, show that 𝑑𝑇

𝑑𝑡 = ⃗𝐺 ⋅ 𝜔⃗.
Introduction: We consider a rigid body rotating about a fixed point (typically the center of
mass or a pivot point) under the influence of an external torque ⃗𝐺. The rotation is characterized
by angular velocity 𝜔⃗. The coordinate system is aligned with the principal axes of the rigid
body at the point of rotation. The objective is to prove that the time derivative of the rotational
kinetic energy 𝑇 is equal to the scalar product of the torque vector ⃗𝐺 with the angular velocity
vector 𝜔⃗.
Solution:

Step 1: Rotational Kinetic Energy

In terms of the principal moments of inertia 𝐼1, 𝐼2, and 𝐼3, and angular velocity components 𝜔1,
𝜔2, and 𝜔3 along the principal axes, the rotational kinetic energy is:

𝑇 = 1
2(𝐼1𝜔2

1 + 𝐼2𝜔2
2 + 𝐼3𝜔2

3).

Step 2: Time Derivative of Kinetic Energy

Taking the time derivative of 𝑇 :
𝑑𝑇
𝑑𝑡 = 1

2 (2𝐼1𝜔1𝜔̇1 + 2𝐼2𝜔2𝜔̇2 + 2𝐼3𝜔3𝜔̇3)
= 𝐼1𝜔1𝜔̇1 + 𝐼2𝜔2𝜔̇2 + 𝐼3𝜔3𝜔̇3. (1)

Step 3: Euler’s Equations of Motion

In a rotating frame aligned with the principal axes and fixed at the rotation point, the Euler
equations for a rigid body are:

𝐼1𝜔̇1 + (𝐼3 − 𝐼2)𝜔2𝜔3 = 𝐺1,
𝐼2𝜔̇2 + (𝐼1 − 𝐼3)𝜔3𝜔1 = 𝐺2,
𝐼3𝜔̇3 + (𝐼2 − 𝐼1)𝜔1𝜔2 = 𝐺3,

where 𝐺1, 𝐺2, 𝐺3 are the components of the external torque ⃗𝐺 in the body frame.

Rewriting the angular acceleration terms from above:

𝐼1𝜔̇1 = 𝐺1 − (𝐼3 − 𝐼2)𝜔2𝜔3,
𝐼2𝜔̇2 = 𝐺2 − (𝐼1 − 𝐼3)𝜔3𝜔1,
𝐼3𝜔̇3 = 𝐺3 − (𝐼2 − 𝐼1)𝜔1𝜔2.

14
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Substitute these into equation (1):

𝑑𝑇
𝑑𝑡 = 𝜔1 [𝐺1 − (𝐼3 − 𝐼2)𝜔2𝜔3] + 𝜔2 [𝐺2 − (𝐼1 − 𝐼3)𝜔3𝜔1]

+ 𝜔3 [𝐺3 − (𝐼2 − 𝐼1)𝜔1𝜔2]
= 𝐺1𝜔1 + 𝐺2𝜔2 + 𝐺3𝜔3

− (𝐼3 − 𝐼2)𝜔1𝜔2𝜔3 − (𝐼1 − 𝐼3)𝜔2𝜔3𝜔1 − (𝐼2 − 𝐼1)𝜔3𝜔1𝜔2.

Now observe that all the triple-product terms cancel pairwise:

− (𝐼3 − 𝐼2)𝜔1𝜔2𝜔3 − (𝐼1 − 𝐼3)𝜔1𝜔2𝜔3 − (𝐼2 − 𝐼1)𝜔1𝜔2𝜔3 = 0.

Hence: 𝑑𝑇
𝑑𝑡 = 𝐺1𝜔1 + 𝐺2𝜔2 + 𝐺3𝜔3 = ⃗𝐺 ⋅ 𝜔⃗.

Conclusion: For a rigid body rotating about a fixed point with angular velocity 𝜔⃗, the time rate
of change of the rotational kinetic energy 𝑇 is equal to the scalar product of the external torque

⃗𝐺 and angular velocity:
𝑑𝑇
𝑑𝑡 = ⃗𝐺 ⋅ 𝜔⃗.

This result is valid when the coordinate system is aligned with the principal axes of the body
and encapsulates the work-energy theorem in rotational dynamics.

15
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38 Determine the number of degrees of freedom for a rigid
body: (i) moving freely in 3D space, (ii) having one point
fixed, (iii) having two points fixed.

Introduction: The degrees of freedom (DOF) of a mechanical system represent the number of
independent parameters required to completely describe its configuration. For a rigid body in
three-dimensional space, these degrees arise from both translation and rotation. We analyze the
number of DOF for three distinct cases of rigid body motion, guided by physical constraints
and symmetry considerations.

Solution:

(i) Rigid body moving freely in 3D space:

A general rigid body in three-dimensional space has:

• 3 translational degrees of freedom: motion along 𝑥, 𝑦, and 𝑧 axes,

• 3 rotational degrees of freedom: rotations about 𝑥, 𝑦, and 𝑧 axes (often described by Euler
angles: 𝜙, 𝜃, 𝜓).

Hence, the total number of degrees of freedom is:

DOF = 3 + 3 = 6.

(ii) Rigid body with one point fixed:

If one point of the rigid body is fixed (e.g., a top pivoted at a point), it cannot translate. However,
it can still rotate about any of the three orthogonal axes through the fixed point. Therefore:

DOF = 3 (rotational).

(iii) Rigid body with two points fixed:

Fixing two points of the body (not coinciding) constrains translation and all but one rotation.
The body can only rotate about the axis passing through these two fixed points. This leaves
only one independent rotational motion:

DOF = 1.

Conclusion:

(i) A rigid body moving freely in 3D space has 6 degrees of freedom.

(ii) A rigid body with one point fixed has 3 degrees of freedom (rotational).

(iii) A rigid body with two points fixed has 1 degree of freedom (rotation about the axis
connecting the fixed points).

These results reflect the progressive constraints imposed on the rigid body by fixing points in
space.
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39 Calculate the moment of inertia of a solid cone of mass
𝑀 , height ℎ, vertical half-angle 𝛼, and radius of its base
𝑅, about an axis passing through its vertex and parallel
to its base.

Introduction: We are to calculate the moment of inertia of a solid cone of mass 𝑀 , height ℎ,
base radius 𝑅, and vertical half-angle 𝛼, about an axis passing through its vertex and parallel
to the base plane (i.e., perpendicular to the cone’s central axis). The cone is uniform and solid.
We’ll use cylindrical coordinates with careful attention to the geometric constraints.

Solution:

Step 1: Coordinate System Setup

Let the vertex of the cone be at the origin and the cone’s central axis aligned along the positive
𝑧-axis. The base of the cone lies in the plane 𝑧 = ℎ. We calculate the moment of inertia about
the 𝑥-axis, which passes through the vertex and is parallel to the base plane.
For rotation about the 𝑥-axis, the perpendicular distance from any point (𝑥, 𝑦, 𝑧) to the rotation
axis is:

𝑟2
⟂ = 𝑦2 + 𝑧2

This is the squared distance measured in the 𝑦𝑧-plane, perpendicular to the 𝑥-axis.
Step 2: Cone Geometry and Density

The cone’s surface is described by the relationship between the radial distance from the 𝑧-axis
and the height:

𝑟 = 𝑅
ℎ 𝑧 = 𝑧 tan𝛼, where tan𝛼 = 𝑅

ℎ

At height 𝑧, the maximum radial extent is 𝑟max(𝑧) = 𝑅
ℎ 𝑧.

Volume of the cone:
𝑉 = 1

3𝜋𝑅2ℎ

Mass density (uniform):
𝜌 = 𝑀

𝑉 = 3𝑀
𝜋𝑅2ℎ

Step 3: Integration Setup in Cylindrical Coordinates

Using cylindrical coordinates (𝑟, 𝜃, 𝑧):

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃, 𝑧 = 𝑧, 𝑑𝑉 = 𝑟 𝑑𝑟 𝑑𝜃 𝑑𝑧

Integration bounds:

• 𝜃: from 0 to 2𝜋 (full rotation)

• 𝑧: from 0 to ℎ (vertex to base)

• 𝑟: from 0 to 𝑅
ℎ 𝑧 (center to cone boundary at height 𝑧)
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Step 4: Moment of Inertia Calculation

The moment of inertia about the 𝑥-axis is:

𝐼𝑥 = ∭
𝑉

𝜌(𝑦2 + 𝑧2) 𝑑𝑉

Substituting 𝑦2 = 𝑟2 sin2 𝜃:

𝐼𝑥 = 𝜌 ∫
2𝜋

0
∫

ℎ

0
∫

𝑧 tan𝛼

0
(𝑟2 sin2 𝜃 + 𝑧2) ⋅ 𝑟 𝑑𝑟 𝑑𝜃 𝑑𝑧

Separating the integral:

𝐼𝑥 = 𝜌 ∫
2𝜋

0
∫

ℎ

0
[∫

𝑧 tan𝛼

0
𝑟3 sin2 𝜃 𝑑𝑟 + 𝑧2 ∫

𝑧 tan𝛼

0
𝑟 𝑑𝑟] 𝑑𝜃 𝑑𝑧

Step 5: Inner Integrations

Computing the 𝑟-integrals:

∫
𝑧 tan𝛼

0
𝑟3 𝑑𝑟 = 1

4(𝑧 tan𝛼)4, ∫
𝑧 tan𝛼

0
𝑟 𝑑𝑟 = 1

2(𝑧 tan𝛼)2

Substituting:

𝐼𝑥 = 𝜌 ∫
2𝜋

0
∫

ℎ

0
[1

4𝑧4 tan4 𝛼 sin2 𝜃 + 1
2𝑧4 tan2 𝛼] 𝑑𝜃 𝑑𝑧

Step 6: Angular Integration

Computing the 𝜃-integrals:

∫
2𝜋

0
sin2 𝜃 𝑑𝜃 = 𝜋, ∫

2𝜋

0
𝑑𝜃 = 2𝜋

Therefore:

𝐼𝑥 = 𝜌 ∫
ℎ

0
𝑧4 [𝜋

4 tan4 𝛼 + 𝜋 tan2 𝛼] 𝑑𝑧 = 𝜌𝜋 ∫
ℎ

0
𝑧4 tan2 𝛼 (1

4 tan2 𝛼 + 1) 𝑑𝑧

Step 7: Final Integration and Substitution

Computing the 𝑧-integral:
∫

ℎ

0
𝑧4 𝑑𝑧 = ℎ5

5

Thus:
𝐼𝑥 = 𝜌𝜋 tan2 𝛼 (1

4 tan2 𝛼 + 1) ℎ5

5
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Substituting 𝜌 = 3𝑀
𝜋𝑅2ℎ and tan𝛼 = 𝑅

ℎ :

𝐼𝑥 = 3𝑀
𝜋𝑅2ℎ ⋅ 𝜋 ⋅ 𝑅2

ℎ2 (1
4 ⋅ 𝑅2

ℎ2 + 1) ⋅ ℎ5

5

= 3𝑀
5 ⋅ 𝑅2ℎ2

ℎ2 ( 𝑅2

4ℎ2 + 1)

= 3𝑀
5 𝑅2 ( 𝑅2

4ℎ2 + 1)

Conclusion: The moment of inertia of a solid cone of mass 𝑀 , base radius 𝑅, and height ℎ
about an axis passing through its vertex and parallel to the base plane is:

𝐼 = 3𝑀
5 𝑅2 (1 + 𝑅2

4ℎ2 )

This result accounts for the geometric distribution of mass relative to the specified rotation axis,
with the first term representing the contribution from the radial distribution and the second term
from the axial distribution of mass.
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40 Show that the kinetic energy and angular momentum of
torque-free motion of a rigid body are constant.

Introduction: We are to demonstrate that in the absence of external torques (i.e., under torque-
free motion), both the kinetic energy and the angular momentum of a rigid body remain constant
over time. This is a fundamental result in rigid body dynamics and follows from the conserva-
tion laws applied to isolated systems. We will work in the body-fixed frame aligned with the
principal axes of inertia.

Solution:

Let the principal moments of inertia of the rigid body be 𝐼1, 𝐼2, and 𝐼3, and let the components
of the angular velocity vector 𝜔⃗ in the body-fixed frame be 𝜔1, 𝜔2, and 𝜔3.

(i) Angular Momentum Conservation

In the absence of external torque, Newton’s second law for rotation gives:

𝑑𝐿⃗
𝑑𝑡 space

= ⃗𝐺ext = ⃗0.

Using the transport theorem:

𝑑𝐿⃗
𝑑𝑡 space

= 𝑑𝐿⃗
𝑑𝑡 body

+ 𝜔⃗ × 𝐿⃗.

So, in the torque-free case:
𝑑𝐿⃗
𝑑𝑡 body

= −𝜔⃗ × 𝐿⃗. (1)

In the body frame aligned with principal axes, the angular momentum is:

𝐿⃗ = 𝐼1𝜔1 ̂𝑒1 + 𝐼2𝜔2 ̂𝑒2 + 𝐼3𝜔3 ̂𝑒3.

Euler’s equations for torque-free motion are:

𝐼1𝜔̇1 + (𝐼3 − 𝐼2)𝜔2𝜔3 = 0,
𝐼2𝜔̇2 + (𝐼1 − 𝐼3)𝜔3𝜔1 = 0,
𝐼3𝜔̇3 + (𝐼2 − 𝐼1)𝜔1𝜔2 = 0. (2)

These equations govern the evolution of 𝜔𝑖(𝑡) in torque-free motion.
To show 𝐿⃗ is constant in the inertial frame, note from equation (1) that its time derivative in the
body frame is a cross product with 𝜔⃗, which means its magnitude and direction in inertial space
remain constant.

(ii) Kinetic Energy Conservation

Rotational kinetic energy of the rigid body is:

𝑇 = 1
2(𝐼1𝜔2

1 + 𝐼2𝜔2
2 + 𝐼3𝜔2

3).
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Take time derivative:

𝑑𝑇
𝑑𝑡 = 𝐼1𝜔1𝜔̇1 + 𝐼2𝜔2𝜔̇2 + 𝐼3𝜔3𝜔̇3.

Substitute 𝜔̇𝑖 from Euler’s equations (2):

𝐼1𝜔1𝜔̇1 = −(𝐼3 − 𝐼2)𝜔1𝜔2𝜔3,
𝐼2𝜔2𝜔̇2 = −(𝐼1 − 𝐼3)𝜔1𝜔2𝜔3,
𝐼3𝜔3𝜔̇3 = −(𝐼2 − 𝐼1)𝜔1𝜔2𝜔3.

So,

𝑑𝑇
𝑑𝑡 = −𝜔1𝜔2𝜔3 [(𝐼3 − 𝐼2) + (𝐼1 − 𝐼3) + (𝐼2 − 𝐼1)] = 0.

Therefore: 𝑑𝑇
𝑑𝑡 = 0.

Conclusion: In the absence of external torque:

(i) The angular momentum vector 𝐿⃗ remains constant in inertial space,

(ii) The kinetic energy 𝑇 of the rigid body remains constant.

These results follow directly from Euler’s equations and reflect conservation of angular mo-
mentum and mechanical energy in torque-free motion.
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