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41 If 𝐼 ′ and 𝐼 be the moments of inertia of a body about an
axis passing through an arbitrary origin and about a par-
allel axis through the center of mass, respectively, show
that 𝐼 ′ = 𝑀𝑅2 + 𝐼 , where �⃗� is the position vector of the
center of mass with respect to the arbitrary origin and 𝑀
is the mass of the body.

Introduction: The problem requires us to derive the relation between the moment of inertia 𝐼′

of a rigid body about an arbitrary axis and the moment of inertia 𝐼 about a parallel axis through
its center of mass. We are given the total mass 𝑀 of the body and the position vector �⃗� of the
center of mass relative to the arbitrary origin. The goal is to prove the parallel axis theorem:

𝐼′ = 𝑀𝑅2 + 𝐼

Wewill approach this by considering the definition ofmoment of inertia and applying coordinate
transformation.

Solution: Consider a rigid body consisting of mass elements 𝑚𝑖 at position vectors ⃗𝑟𝑖 with
respect to an arbitrary origin 𝑂. Let the two parallel axes be perpendicular to the plane of
motion.

The position vector of the center of mass is defined as:

�⃗� = 1
𝑀 ∑

𝑖
𝑚𝑖 ⃗𝑟𝑖

where 𝑀 = ∑𝑖 𝑚𝑖 is the total mass.

Define ⃗𝑟′
𝑖 = ⃗𝑟𝑖 − �⃗� as the position vector of the 𝑖th mass element relative to the center of mass.

The moment of inertia 𝐼′ about the axis through the arbitrary origin is:

𝐼′ = ∑
𝑖

𝑚𝑖| ⃗𝑟𝑖|2

The moment of inertia 𝐼 about the parallel axis through the center of mass is:

𝐼 = ∑
𝑖

𝑚𝑖| ⃗𝑟′
𝑖|2

Now, substituting ⃗𝑟𝑖 = �⃗� + ⃗𝑟′
𝑖 into the expression for 𝐼′:

𝐼′ = ∑
𝑖

𝑚𝑖|�⃗� + ⃗𝑟′
𝑖|2

Expanding the square of the vector sum:

𝐼′ = ∑
𝑖

𝑚𝑖(�⃗� + ⃗𝑟′
𝑖) ⋅ (�⃗� + ⃗𝑟′

𝑖)
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𝐼′ = ∑
𝑖

𝑚𝑖(|�⃗�|2 + 2�⃗� ⋅ ⃗𝑟′
𝑖 + | ⃗𝑟′

𝑖|2)

Distributing the summation:

𝐼′ = ∑
𝑖

𝑚𝑖|�⃗�|2 + 2�⃗� ⋅ ∑
𝑖

𝑚𝑖 ⃗𝑟′
𝑖 + ∑

𝑖
𝑚𝑖| ⃗𝑟′

𝑖|2

Evaluating each term:

(i) |�⃗�|2 = 𝑅2 is constant, so ∑𝑖 𝑚𝑖𝑅2 = 𝑀𝑅2

(ii) ∑𝑖 𝑚𝑖 ⃗𝑟′
𝑖 = ∑𝑖 𝑚𝑖( ⃗𝑟𝑖 − �⃗�) = ∑𝑖 𝑚𝑖 ⃗𝑟𝑖 − 𝑀�⃗� = 𝑀�⃗� − 𝑀�⃗� = 0 (by definition of

center of mass)

(iii) ∑𝑖 𝑚𝑖| ⃗𝑟′
𝑖|2 = 𝐼 (moment of inertia about center of mass)

Therefore:
𝐼′ = 𝑀𝑅2 + 2�⃗� ⋅ ⃗0 + 𝐼 = 𝑀𝑅2 + 𝐼

Conclusion: We have proven that the moment of inertia 𝐼′ of a rigid body about an arbitrary
axis is related to the moment of inertia 𝐼 about a parallel axis through the center of mass by:

𝐼′ = 𝑀𝑅2 + 𝐼

This fundamental result is known as the parallel axis theorem (or Steiner’s theorem), which is
essential in rotational dynamics for calculating moments of inertia about different axes.
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42 Consider a rigid body rotating about an axis passing through
a fixed point in the body with an angular velocity �⃗�. De-
termine the kinetic energy of such a rotating body in a co-
ordinate system of principal axes. If the Earth suddenly
stops rotating, what will happen to the rotational kinetic
energy? Comment in detail.

Introduction: We are to determine the kinetic energy of a rigid body rotating with angular
velocity �⃗� about a fixed point using a coordinate system aligned with the principal axes of
inertia. Additionally, we must discuss the physical implications if the Earth, a rotating rigid
body, were to suddenly stop spinning.

Let the body have moment of inertia tensor I and mass distribution such that the rotation is
analyzed with respect to principal axes at the fixed point. The goal is to express kinetic energy
in terms of the angular velocity components and principal moments of inertia.

Solution:

Part 1: Kinetic Energy in Principal Axes

The kinetic energy 𝑇 of a rotating rigid body about a fixed point is given by:

𝑇 = 1
2�⃗� ⋅ �⃗�

where �⃗� = I�⃗� is the angular momentum.

In a principal axis coordinate system, the inertia tensor I is diagonal:

I = ⎡⎢
⎣

𝐼1 0 0
0 𝐼2 0
0 0 𝐼3

⎤⎥
⎦

Let the angular velocity vector be:

�⃗� = 𝜔1 ̂𝑖 + 𝜔2 ̂𝑗 + 𝜔3�̂�

Then the angular momentum vector is:

�⃗� = 𝐼1𝜔1 ̂𝑖 + 𝐼2𝜔2 ̂𝑗 + 𝐼3𝜔3�̂�

The kinetic energy becomes:

𝑇 = 1
2�⃗� ⋅ �⃗� = 1

2(𝜔1, 𝜔2, 𝜔3) ⋅ (𝐼1𝜔1, 𝐼2𝜔2, 𝐼3𝜔3)

𝑇 = 1
2(𝐼1𝜔2

1 + 𝐼2𝜔2
2 + 𝐼3𝜔2

3)

This expression shows that in a principal axis system, the rotational kinetic energy is a simple
sum of the energy contributions along each principal direction.
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Part 2: Earth’s Rotational Kinetic Energy

The Earth rotates about its polar axis (approximately a principal axis) with: - Moment of inertia:
𝐼𝐸 ≈ 8.0 × 1037 kg�m² - Angular velocity: 𝜔𝐸 = 2𝜋

24×3600 ≈ 7.3 × 10−5 rad/s

The Earth’s rotational kinetic energy is:

𝑇𝐸 = 1
2𝐼𝐸𝜔2

𝐸 ≈ 1
2 × 8.0 × 1037 × (7.3 × 10−5)2 ≈ 2.1 × 1029 J

Physical Consequences if Earth Stops Rotating:

If the Earth suddenly stops rotating (𝜔𝐸 → 0), the rotational kinetic energy 𝑇𝐸 → 0. This
enormous energy (∼ 1029 J) must be converted to other forms:

1. Atmospheric and Oceanic Inertia: The atmosphere and oceans would continue moving
eastward at speeds up to 1670 km/h (at the equator) due to inertia. This would create:

• Supersonic winds causing complete atmospheric redistribution

• Massive tsunamis as oceans slam into continental barriers

• Complete destruction of all surface structures

2. Internal Heating: The kinetic energy conversion would cause:

• Extreme frictional heating throughout the Earth’s crust and mantle

• Potential melting of significant portions of the Earth’s surface

• Massive volcanic activity and crustal deformation

3. Gravitational and Tidal Effects:

• Earth’s oblate shape (due to rotation) would begin to change, causingmassive earthquakes

• Tidal patterns would be completely disrupted

• The length of day would become equal to the orbital period (1 year)

4. Conservation Laws: From a physics standpoint, such an event would require:

• An external torque of magnitude | ⃗𝜏 | = 𝑑�⃗�
𝑑𝑡 = 𝐼𝐸𝜔𝐸/Δ𝑡

• For a sudden stop (Δ𝑡 → 0), this torque approaches infinity
• This violates the principle that no infinite forces exist in nature

5. Reference Frame Considerations: The ”sudden stop” is relative to the inertial reference
frame. From the perspective of energy conservation, the 2.1 × 1029 J would manifest as:

• Kinetic energy of atmospheric motion: ∼ 1027 J

• Seismic energy from crustal readjustment: ∼ 1026 J

• Thermal energy from friction: ∼ 1029 J (the majority)

Conclusion: The kinetic energy of a rigid body rotating about a fixed point in a principal axis
system is:

𝑇 = 1
2(𝐼1𝜔2

1 + 𝐼2𝜔2
2 + 𝐼3𝜔2

3)
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If the Earth were to stop rotating suddenly, its enormous rotational kinetic energy (∼ 2.1×1029

J) would be converted into catastrophic forms of energy including atmospheric motion, seismic
activity, and thermal heating. Such an event is physically impossible without infinite external
torque, demonstrating both the conservation of angular momentum and the immense scale of
planetary rotational energy.
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43 A body turns about a fixed point. Show that the angle
between its angular velocity vector and its angular mo-
mentum vector about the fixed point is always acute.

Introduction: We are to show that for a rigid body rotating about a fixed point, the angle
between its angular velocity vector �⃗� and its angular momentum vector �⃗� about the fixed point
is always acute. This entails demonstrating that the scalar product �⃗� ⋅ �⃗� is always positive,
which implies that the angle 𝜃 between them satisfies 0 ≤ 𝜃 < 𝜋

2 .

Solution:

Consider a rigid body rotating about a fixed point 𝑂 with angular velocity �⃗�. Let the body
consist of mass elements 𝑚𝑖 at position vectors ⃗𝑟𝑖 from point 𝑂.

The velocity of the 𝑖th mass element is:

⃗𝑣𝑖 = �⃗� × ⃗𝑟𝑖

The angular momentum about point 𝑂 is:

�⃗� = ∑
𝑖

𝑚𝑖( ⃗𝑟𝑖 × ⃗𝑣𝑖) = ∑
𝑖

𝑚𝑖 ⃗𝑟𝑖 × (�⃗� × ⃗𝑟𝑖)

Using the vector triple product identity ⃗𝑎 × ( ⃗𝑏 × ⃗𝑐) = ⃗𝑏( ⃗𝑎 ⋅ ⃗𝑐) − ⃗𝑐( ⃗𝑎 ⋅ ⃗𝑏):

⃗𝑟𝑖 × (�⃗� × ⃗𝑟𝑖) = �⃗�( ⃗𝑟𝑖 ⋅ ⃗𝑟𝑖) − ⃗𝑟𝑖( ⃗𝑟𝑖 ⋅ �⃗�) = �⃗�𝑟2
𝑖 − ⃗𝑟𝑖( ⃗𝑟𝑖 ⋅ �⃗�)

Therefore:
�⃗� = ∑

𝑖
𝑚𝑖[�⃗�𝑟2

𝑖 − ⃗𝑟𝑖( ⃗𝑟𝑖 ⋅ �⃗�)]

This can be written in tensor form as:
�⃗� = I�⃗�

where I is the inertia tensor with components:

𝐼𝑗𝑘 = ∑
𝑖

𝑚𝑖(𝑟2
𝑖 𝛿𝑗𝑘 − 𝑟𝑖𝑗𝑟𝑖𝑘)

Now, the kinetic energy of the rotating body is:

𝑇 = 1
2 ∑

𝑖
𝑚𝑖𝑣2

𝑖 = 1
2 ∑

𝑖
𝑚𝑖|�⃗� × ⃗𝑟𝑖|2

Using the identity | ⃗𝑎 × �⃗�|2 = 𝑎2𝑏2 − ( ⃗𝑎 ⋅ ⃗𝑏)2:

|�⃗� × ⃗𝑟𝑖|2 = 𝜔2𝑟2
𝑖 − (�⃗� ⋅ ⃗𝑟𝑖)2

Therefore:
𝑇 = 1

2 ∑
𝑖

𝑚𝑖[𝜔2𝑟2
𝑖 − (�⃗� ⋅ ⃗𝑟𝑖)2]
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Alternatively, we can express kinetic energy as:

𝑇 = 1
2�⃗� ⋅ �⃗� = 1

2�⃗� ⋅ (I�⃗�)

To prove this relationship, we compute:

�⃗� ⋅ �⃗� = �⃗� ⋅ ∑
𝑖

𝑚𝑖[�⃗�𝑟2
𝑖 − ⃗𝑟𝑖( ⃗𝑟𝑖 ⋅ �⃗�)]

= ∑
𝑖

𝑚𝑖[𝜔2𝑟2
𝑖 − (�⃗� ⋅ ⃗𝑟𝑖)2] = 2𝑇

Since the inertia tensor is positive definite (a fundamental property of mass distributions), we
have:

�⃗� ⋅ (I�⃗�) > 0 for all �⃗� ≠ ⃗0

This can be proven by noting that for any real vector �⃗�:

�⃗� ⋅ (I�⃗�) = ∑
𝑖

𝑚𝑖[𝜔2𝑟2
𝑖 − (�⃗� ⋅ ⃗𝑟𝑖)2]

By the Cauchy-Schwarz inequality, (�⃗� ⋅ ⃗𝑟𝑖)2 ≤ 𝜔2𝑟2
𝑖 , with equality only when ⃗𝑟𝑖 is parallel to

�⃗�. Since the body is three-dimensional (not all mass elements lie on a single line through 𝑂),
there exist mass elements for which ⃗𝑟𝑖 is not parallel to �⃗�, ensuring:

∑
𝑖

𝑚𝑖[𝜔2𝑟2
𝑖 − (�⃗� ⋅ ⃗𝑟𝑖)2] > 0

Therefore:
𝑇 = 1

2�⃗� ⋅ �⃗� > 0 for �⃗� ≠ ⃗0

This implies:
�⃗� ⋅ �⃗� > 0

Since �⃗� ⋅ �⃗� = |�⃗�||�⃗�| cos 𝜃 > 0, and both |�⃗�| > 0 and |�⃗�| > 0 for non-zero rotation, we must
have:

cos 𝜃 > 0 ⇒ 0 ≤ 𝜃 < 𝜋
2

Conclusion: The angle between the angular velocity vector �⃗� and the angularmomentum vector
�⃗� of a rigid body rotating about a fixed point is always acute. This follows from the positive
definiteness of the inertia tensor, which ensures that �⃗� ⋅ �⃗� = 2𝑇 > 0 for any non-zero rotation,
where 𝑇 is the kinetic energy.
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44 How does one obtain the angular velocity of the Earth
about the North Pole with respect to a fixed star as 7.292×
10−5 𝑠−1? Explain your method of calculating the above
value.

Introduction: The question involves calculating the angular velocity of the Earth as it rotates
about its axis (which passes through the North and South Poles) with respect to a fixed star. This
angular velocity corresponds to the sidereal rotation period of the Earth — the time it takes for
the Earth to complete one full rotation relative to the fixed stars, rather than the Sun.

Solution:

The angular velocity 𝜔 of any rotating object is given by:

𝜔 = 2𝜋
𝑇

where 𝑇 is the period of rotation in seconds.

For the Earth, the sidereal day (rotation period with respect to fixed stars) is:

𝑇 = 23 h 56min 4.091 s

Convert this to seconds:

𝑇 = 23 × 3600 + 56 × 60 + 4.091
= 82800 + 3360 + 4.091
= 86164.091 s

Now compute the angular velocity:

𝜔 = 2𝜋
86164.091 s−1

Evaluating:
𝜔 ≈ 6.283185

86164.091 ≈ 7.292 × 10−5 s−1

Conclusion: The Earth’s angular velocity about the North Pole with respect to a fixed star is
obtained by dividing 2𝜋 radians by the sidereal day duration in seconds, yielding:

𝜔 ≈ 7.292 × 10−5 s−1

This represents the Earth’s uniform angular speed as it rotates once per sidereal day relative to
the fixed stars.
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45 Show that the moment of inertia of a circular disc of mass
𝑀 and radius 𝑅 about an axis passing through its center
and perpendicular to its plane is 1

2𝑀𝑅2.
Introduction: The problem is to derive the moment of inertia of a uniform circular disc about
an axis that passes through its center and is perpendicular to its plane. We consider a planar disc
of total mass𝑀 and radius𝑅, with mass uniformly distributed. The calculation uses integration
over the area of the disc to sum contributions of elemental mass at varying distances from the
axis.

Solution:

Consider a circular disc of radius 𝑅 and total mass 𝑀 , with uniform surface mass density. The
axis of rotation is through the center and perpendicular to the plane of the disc.

Let 𝜎 be the mass per unit area:
𝜎 = 𝑀

𝜋𝑅2

We use polar coordinates (𝑟, 𝜃) to integrate over the area of the disc. Consider an elemental
ring of radius 𝑟 and thickness 𝑑𝑟.
The area of the ring is:

𝑑𝐴 = 2𝜋𝑟 𝑑𝑟

The mass of the ring is:
𝑑𝑚 = 𝜎 𝑑𝐴 = 𝜎 ⋅ 2𝜋𝑟 𝑑𝑟

Each mass element in the ring is at a distance 𝑟 from the axis of rotation, so its moment of inertia
is:

𝑑𝐼 = 𝑟2 𝑑𝑚 = 𝑟2 ⋅ 𝜎 ⋅ 2𝜋𝑟 𝑑𝑟 = 2𝜋𝜎𝑟3 𝑑𝑟

Integrate 𝑑𝐼 from 𝑟 = 0 to 𝑟 = 𝑅:

𝐼 = ∫
𝑅

0
2𝜋𝜎𝑟3 𝑑𝑟 = 2𝜋𝜎 ∫

𝑅

0
𝑟3 𝑑𝑟 = 2𝜋𝜎 [𝑟4

4 ]
𝑅

0
= 1

2𝜋𝜎𝑅4

Substitute 𝜎 = 𝑀
𝜋𝑅2 :

𝐼 = 1
2𝜋 ⋅ 𝑀

𝜋𝑅2 ⋅ 𝑅4 = 1
2𝑀𝑅2

Conclusion: The moment of inertia of a uniform circular disc of mass 𝑀 and radius 𝑅 about
an axis through its center and perpendicular to its plane is:

𝐼 = 1
2𝑀𝑅2

This result is fundamental in planar rotational dynamics and is widely used in mechanical and
physical applications.
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46 Four solid spheres A, B, C, and D, each of mass 𝑚 and
radius 𝑎, are placed with their centers on the four corners
of a square of side 𝑏. Calculate the moment of inertia of
the system about one side of the square. Also, calculate
the moment of inertia of the system about a diagonal of
the square.

Introduction: We are given four identical solid spheres of mass 𝑚 and radius 𝑎 placed at the
corners of a square of side 𝑏. The task is to calculate the moment of inertia (MI) of this system:

(a) About one side of the square (say, the side through centers of spheres A and B),

(b) About a diagonal of the square (say, the diagonal through spheres A and C).

Each sphere’s moment of inertia includes both the moment about its own center and the addi-
tional term due to its displacement from the axis, using the parallel axis theorem.

Solution:

Let us establish a coordinate system and label the square’s corners as:

• A at origin: (0,0)

• B: (b,0)

• C: (b,b)

• D: (0,b)

The moment of inertia of a solid sphere about any axis through its center is:

𝐼sphere,center = 2
5𝑚𝑎2

For any sphere displaced from the rotation axis, we apply the parallel axis theorem:

𝐼total = 𝐼center + 𝑚𝑑2

where 𝑑 is the perpendicular distance from the sphere’s center to the rotation axis.

Part (a): Moment of Inertia about side AB

The rotation axis is along the x-axis (the line segment AB).

Distances from the rotation axis:

• Sphere A at (0,0): 𝑑𝐴 = 0 (center lies on the axis)

• Sphere B at (b,0): 𝑑𝐵 = 0 (center lies on the axis)

• Sphere C at (b,b): 𝑑𝐶 = 𝑏 (perpendicular distance from x-axis)

• Sphere D at (0,b): 𝑑𝐷 = 𝑏 (perpendicular distance from x-axis)

Individual moments of inertia:
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• 𝐼𝐴 = 2
5𝑚𝑎2 + 𝑚(0)2 = 2

5𝑚𝑎2

• 𝐼𝐵 = 2
5𝑚𝑎2 + 𝑚(0)2 = 2

5𝑚𝑎2

• 𝐼𝐶 = 2
5𝑚𝑎2 + 𝑚𝑏2

• 𝐼𝐷 = 2
5𝑚𝑎2 + 𝑚𝑏2

Total moment of inertia about side AB:

𝐼AB = 𝐼𝐴 + 𝐼𝐵 + 𝐼𝐶 + 𝐼𝐷 (1)

= 2 (2
5𝑚𝑎2) + 2 (2

5𝑚𝑎2 + 𝑚𝑏2) (2)

= 4
5𝑚𝑎2 + 4

5𝑚𝑎2 + 2𝑚𝑏2 (3)

= 8
5𝑚𝑎2 + 2𝑚𝑏2 (4)

Part (b): Moment of Inertia about diagonal AC

The rotation axis is along the diagonal AC, which lies along the line 𝑦 = 𝑥 from (0,0) to (b,b).

The perpendicular distance from a point (𝑥0, 𝑦0) to the line 𝑦 = 𝑥 is:

𝑑 = |𝑥0 − 𝑦0|
√12 + (−1)2 = |𝑥0 − 𝑦0|√

2

Distances from the rotation axis:

• Sphere A at (0,0): 𝑑𝐴 = |0−0|√
2 = 0 (lies on diagonal)

• Sphere B at (b,0): 𝑑𝐵 = |𝑏−0|√
2 = 𝑏√

2

• Sphere C at (b,b): 𝑑𝐶 = |𝑏−𝑏|√
2 = 0 (lies on diagonal)

• Sphere D at (0,b): 𝑑𝐷 = |0−𝑏|√
2 = 𝑏√

2

Individual moments of inertia:

• 𝐼𝐴 = 2
5𝑚𝑎2 + 𝑚(0)2 = 2

5𝑚𝑎2

• 𝐼𝐵 = 2
5𝑚𝑎2 + 𝑚 ( 𝑏√

2)2 = 2
5𝑚𝑎2 + 𝑚𝑏2

2

• 𝐼𝐶 = 2
5𝑚𝑎2 + 𝑚(0)2 = 2

5𝑚𝑎2

• 𝐼𝐷 = 2
5𝑚𝑎2 + 𝑚 ( 𝑏√

2)2 = 2
5𝑚𝑎2 + 𝑚𝑏2

2

12
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Total moment of inertia about diagonal AC:

𝐼AC = 𝐼𝐴 + 𝐼𝐵 + 𝐼𝐶 + 𝐼𝐷 (5)

= 2 (2
5𝑚𝑎2) + 2 (2

5𝑚𝑎2 + 𝑚𝑏2

2 ) (6)

= 4
5𝑚𝑎2 + 4

5𝑚𝑎2 + 𝑚𝑏2 (7)

= 8
5𝑚𝑎2 + 𝑚𝑏2 (8)

Conclusion: The moments of inertia of the system of four identical solid spheres placed at the
corners of a square of side 𝑏 are:

• About one side of the square:

𝐼side = 8
5𝑚𝑎2 + 2𝑚𝑏2

• About a diagonal of the square:

𝐼diagonal = 8
5𝑚𝑎2 + 𝑚𝑏2

Note that the moment of inertia about the diagonal is smaller than that about the side, which is
expected since the average distance of the spheres from the diagonal is less than from the side.

13
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47 Define moment of inertia and explain its physical signifi-
cance. Calculate the moment of inertia of an annular ring
about an axis passing through its center and perpendicu-
lar to its plane.

Introduction: This problem consists of two parts. First, we are to define the moment of inertia
(MI) and explain its physical meaning in the context of rotational dynamics. Second, we must
calculate the MI of an annular ring (a flat ring with inner and outer radii) about an axis passing
through its center and perpendicular to its plane.

Solution:

Definition and Physical Significance:

The moment of inertia 𝐼 of a rigid body about a given axis is a scalar measure of the body’s
resistance to angular acceleration about that axis. It is defined as:

𝐼 = ∑
𝑖

𝑚𝑖𝑟2
𝑖

for discrete masses, or
𝐼 = ∫ 𝑟2 𝑑𝑚

for continuous mass distributions, where 𝑟 is the perpendicular distance of a mass element 𝑑𝑚
from the axis of rotation.

Physical significance:

• It plays a role analogous to mass in linear motion, appearing in the rotational analog of
Newton’s second law:

𝜏 = 𝐼𝛼
where 𝜏 is torque and 𝛼 is angular acceleration.

• It determines the rotational kinetic energy:

𝑇 = 1
2𝐼𝜔2

where 𝜔 is the angular velocity.

• A larger moment of inertia implies more torque is needed to achieve the same angular
acceleration.

Moment of Inertia of an Annular Ring:

Let the annular ring have:

• Inner radius: 𝑅1

• Outer radius: 𝑅2

• Total mass: 𝑀

14
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Assume uniform surface mass density. We compute the MI about an axis perpendicular to its
plane and through its center.

Let 𝑑𝑚 be the mass of an infinitesimal ring of radius 𝑟 and thickness 𝑑𝑟.
The area of the infinitesimal ring is:

𝑑𝐴 = 2𝜋𝑟 𝑑𝑟

Total area of the annular ring:
𝐴 = 𝜋(𝑅2

2 − 𝑅2
1)

Surface mass density:
𝜎 = 𝑀

𝜋(𝑅2
2 − 𝑅2

1)

Mass of infinitesimal ring:

𝑑𝑚 = 𝜎 ⋅ 𝑑𝐴 = 𝑀
𝜋(𝑅2

2 − 𝑅2
1) ⋅ 2𝜋𝑟 𝑑𝑟 = 2𝑀𝑟 𝑑𝑟

𝑅2
2 − 𝑅2

1

Moment of inertia of this ring:

𝑑𝐼 = 𝑟2 𝑑𝑚 = 2𝑀𝑟3 𝑑𝑟
𝑅2

2 − 𝑅2
1

Total moment of inertia:

𝐼 = ∫
𝑅2

𝑅1

2𝑀𝑟3 𝑑𝑟
𝑅2

2 − 𝑅2
1

= 2𝑀
𝑅2

2 − 𝑅2
1

∫
𝑅2

𝑅1

𝑟3 𝑑𝑟

= 2𝑀
𝑅2

2 − 𝑅2
1

[𝑟4

4 ]
𝑅2

𝑅1

= 2𝑀
𝑅2

2 − 𝑅2
1

⋅ 1
4(𝑅4

2 − 𝑅4
1)

= 𝑀
2 ⋅ 𝑅4

2 − 𝑅4
1

𝑅2
2 − 𝑅2

1

Using the identity 𝑎2 − 𝑏2 = (𝑎 − 𝑏)(𝑎 + 𝑏), we simplify:

𝐼 = 𝑀
2 (𝑅2

1 + 𝑅2
2)

Conclusion: The moment of inertia of an annular ring of mass 𝑀 , inner radius 𝑅1, and outer
radius 𝑅2, about an axis perpendicular to its plane and through its center, is:

𝐼 = 𝑀
2 (𝑅2

1 + 𝑅2
2)

This result generalizes the familiar 𝐼 = 𝑀𝑅2 for a thin ring, which is recovered when 𝑅1 =
𝑅2 = 𝑅.

15
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48 (i) Find themoments of inertia of a rigid diatomicmolecule
about different symmetry axes through the center ofmass.

Introduction: A rigid diatomicmolecule consists of two atoms ofmasses𝑚1 and𝑚2, separated
by a fixed distance 𝑟. We need to compute themoments of inertia about all principal axes passing
through the center of mass (COM). Due to the linear geometry, there are three principal axes
with only two distinct moment of inertia values.

Setup: Let the molecular axis be along the z-direction. The center of mass divides the internu-
clear distance such that:

𝑟1 = 𝑚2𝑟
𝑚1 + 𝑚2

, 𝑟2 = 𝑚1𝑟
𝑚1 + 𝑚2

where 𝑟1 and 𝑟2 are the distances from the COM to atoms 1 and 2, respectively.

Solution:

(a) Moment of inertia about the molecular axis (z-axis): Since both atoms lie on the z-axis,
their perpendicular distances from this axis are zero:

𝐼𝑧 = 𝐼∥ = 𝑚1 ⋅ 02 + 𝑚2 ⋅ 02 = 0

(b) Moment of inertia about axes perpendicular to the molecular axis: For rotation about
the x-axis (perpendicular to the molecular bond):

𝐼𝑥 = 𝑚1𝑟2
1 + 𝑚2𝑟2

2

Substituting the COM distances:

𝐼𝑥 = 𝑚1 ( 𝑚2𝑟
𝑚1 + 𝑚2

)
2

+ 𝑚2 ( 𝑚1𝑟
𝑚1 + 𝑚2

)
2

= 𝑚1𝑚2
2𝑟2 + 𝑚2𝑚2

1𝑟2

(𝑚1 + 𝑚2)2 = 𝑚1𝑚2𝑟2(𝑚1 + 𝑚2)
(𝑚1 + 𝑚2)2

𝐼𝑥 = 𝑚1𝑚2𝑟2

𝑚1 + 𝑚2
= 𝜇𝑟2

where 𝜇 = 𝑚1𝑚2
𝑚1+𝑚2

is the reduced mass.

(c) Moment of inertia about the y-axis: By symmetry, rotation about any axis perpendicular
to the molecular bond gives the same result:

𝐼𝑦 = 𝐼𝑥 = 𝜇𝑟2

Summary of Principal Moments of Inertia: For a rigid diatomic molecule, the three principal
moments of inertia are:

𝐼𝑧 = 0 (along molecular axis) (9)
𝐼𝑥 = 𝐼𝑦 = 𝜇𝑟2 (perpendicular to molecular axis) (10)

where 𝜇 = 𝑚1𝑚2
𝑚1+𝑚2

is the reduced mass.

Physical Significance:

16
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• The zero moment about the molecular axis reflects that point masses have no rotational
inertia about their connecting line.

• The two equal perpendicular moments arise from the cylindrical symmetry of the linear
molecule.

• The reduced mass form 𝜇𝑟2 is fundamental in rotational spectroscopy and appears in the
rotational energy levels: 𝐸𝐽 = ℏ2𝐽(𝐽+1)

2𝐼 .

17
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(ii) A proton is 1837 times heavier than an electron. Find the
center of mass of a hydrogen atom.
Introduction: A hydrogen atom consists of a proton and an electron. The proton is approx-
imately 1837 times more massive than the electron. While the electron in a hydrogen atom
doesn’t have a well-defined classical position due to quantum mechanics, we can find the cen-
ter of mass by considering the average position of the electron or by treating this as a classical
two-particle system for pedagogical purposes.

Classical Approach: Let the mass of the electron be 𝑚𝑒, and the mass of the proton be 𝑚𝑝 =
1837 𝑚𝑒.

For a classical treatment, consider the proton at the origin (𝑥 = 0) and the electron at some
distance 𝑟 from the proton (𝑥 = 𝑟). The center of mass position is given by:

𝑥COM = 𝑚𝑝𝑥𝑝 + 𝑚𝑒𝑥𝑒
𝑚𝑝 + 𝑚𝑒

Substituting the values:

𝑥COM = 1837 𝑚𝑒 ⋅ 0 + 𝑚𝑒 ⋅ 𝑟
1837 𝑚𝑒 + 𝑚𝑒

= 𝑚𝑒𝑟
1838 𝑚𝑒

= 𝑟
1838

Quantum Mechanical Consideration: In quantum mechanics, the electron doesn’t have a
definite position, but we can consider its expectation value. For the ground state hydrogen
atom, the expectation value of the electron’s distance from the proton is ⟨𝑟⟩ = 3𝑎0

2 , where
𝑎0 = 0.529 × 10−10 m is the Bohr radius.

Using this quantum mechanical average:

𝑥COM = ⟨𝑟⟩
1838 = 3𝑎0

2 × 1838 ≈ 1.59𝑎0
1838 ≈ 8.65 × 10−4𝑎0

Numerical Result: Taking 𝑎0 = 0.529 × 10−10 m:

𝑥COM ≈ 4.58 × 10−14 m

Physical Interpretation:

• The center of mass lies extremely close to the proton (less than 0.1% of the Bohr radius
away).

• This justifies treating the proton as effectively stationary in many hydrogen atom calcu-
lations.

• The result is independent of the specific value of 𝑟 used - the COM is always at 𝑟/1838
from the proton.

• This analysis forms the basis for reduced mass concepts in atomic physics, where 𝜇 =
𝑚𝑝𝑚𝑒

𝑚𝑝+𝑚𝑒
≈ 𝑚𝑒.

Conclusion: The center of mass of a hydrogen atom lies at a distance of approximately 𝑟
1838

from the proton, where 𝑟 is the characteristic electron-proton separation. This distance is neg-
ligible compared to atomic dimensions, confirming that the proton can be treated as the center
of mass in most atomic calculations.

18



A/P

Solution of Mechanics PYQs ABHI PHYSICS

49 Write down Euler’s dynamical equations of motion (no
derivation) for a rigid body about a fixed point under the
action of a torque. Show that the kinetic energy of the
torque-free motion is constant.

Introduction: Euler’s equations describe the rotational dynamics of a rigid body about a fixed
point, accounting for external torques. These equations relate the components of angular veloc-
ity and angular momentum in the body-fixed frame aligned with principal axes. In the absence
of external torque (torque-free motion), we aim to show that the rotational kinetic energy re-
mains constant.

Solution:

Let 𝐼1, 𝐼2, and 𝐼3 be the principal moments of inertia about the body-fixed axes, and let 𝜔1,
𝜔2, and 𝜔3 be the corresponding components of angular velocity. Let 𝑁1, 𝑁2, and 𝑁3 be the
components of the external torque in the body-fixed frame.

Euler’s equations of motion (no derivation) are:

𝐼1�̇�1 + (𝐼3 − 𝐼2)𝜔2𝜔3 = 𝑁1
𝐼2�̇�2 + (𝐼1 − 𝐼3)𝜔3𝜔1 = 𝑁2
𝐼3�̇�3 + (𝐼2 − 𝐼1)𝜔1𝜔2 = 𝑁3

For torque-free motion, the external torques are zero:

𝑁1 = 𝑁2 = 𝑁3 = 0
Thus, Euler’s equations reduce to:

𝐼1�̇�1 + (𝐼3 − 𝐼2)𝜔2𝜔3 = 0
𝐼2�̇�2 + (𝐼1 − 𝐼3)𝜔3𝜔1 = 0
𝐼3�̇�3 + (𝐼2 − 𝐼1)𝜔1𝜔2 = 0

The rotational kinetic energy 𝑇 of the rigid body is given by:

𝑇 = 1
2(𝐼1𝜔2

1 + 𝐼2𝜔2
2 + 𝐼3𝜔2

3)

To show that 𝑇 is constant, compute its time derivative:

𝑑𝑇
𝑑𝑡 = 𝐼1𝜔1�̇�1 + 𝐼2𝜔2�̇�2 + 𝐼3𝜔3�̇�3

Substitute from Euler’s torque-free equations:

𝑑𝑇
𝑑𝑡 = 𝜔1[−(𝐼3 − 𝐼2)𝜔2𝜔3] + 𝜔2[−(𝐼1 − 𝐼3)𝜔3𝜔1] + 𝜔3[−(𝐼2 − 𝐼1)𝜔1𝜔2]

= −(𝐼3 − 𝐼2)𝜔1𝜔2𝜔3 − (𝐼1 − 𝐼3)𝜔1𝜔2𝜔3 − (𝐼2 − 𝐼1)𝜔1𝜔2𝜔3
= −𝜔1𝜔2𝜔3 [(𝐼3 − 𝐼2) + (𝐼1 − 𝐼3) + (𝐼2 − 𝐼1)]
= −𝜔1𝜔2𝜔3 ⋅ 0 = 0
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Conclusion: Euler’s equations govern the rotation of a rigid body about a fixed point under
torque. In the absence of external torque, the rotational kinetic energy remains constant, indi-
cating conservation of energy in torque-free rigid body motion.
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50 Where do you find the applications of gyroscopes? A top
of mass 0.200 kg consists of a thin disc of radius 0.12 m.
A pin of negligible mass is mounted normal to its plane.
The pivot under the disc is 0.03m long. The top spins with
its axis making an angle 𝜃 = 20∘ with the vertical and a
precessional angular speed of 2 rad/s. Calculate its spin
angular speed.

Applications of Gyroscopes: Gyroscopes find extensive applications across various fields due
to their ability to maintain orientation and detect rotational motion:

• Navigation Systems: Aircraft, ships, and submarines use gyroscopic compasses and in-
ertial navigation systems (INS) for accurate directional guidance independent of magnetic
fields.

• Aerospace: Spacecraft and satellites employ gyroscopes for attitude control and stabi-
lization during orbital maneuvers.

• Consumer Electronics: Smartphones, tablets, and gaming controllers use MEMS gyro-
scopes for screen rotation, motion sensing, and gaming applications.

• Transportation: Modern vehicles use gyroscopic sensors in electronic stability control
(ESC) systems to prevent skidding and rollover.

• Robotics: Autonomous robots and drones rely on gyroscopes for balance and orientation
control.

• Scientific Instruments: Telescopes use gyrostabilized mounts for precise astronomical
observations.

• Military Applications: Guided missiles and torpedoes use gyroscopic guidance systems
for accurate targeting.

Problem Analysis: Given data:

𝑚 = 0.200 kg, 𝑅 = 0.12m, 𝑙 = 0.03m
𝜃 = 20∘, Ω = 2 rad/s (precession angular speed)

Solution: For a symmetric top undergoing steady precession under gravity, the relationship
between precession angular velocity Ω and spin angular velocity 𝜔𝑠 is derived from the torque
equation:

The gravitational torque about the pivot point is 𝜏 = 𝑚𝑔𝑙 sin 𝜃, which causes the angular mo-
mentum vector to precess. For steady precession:

𝜏 = Ω × 𝐿𝑠 = Ω𝐿𝑠 sin 𝜃

where 𝐿𝑠 = 𝐼𝑠𝜔𝑠 is the spin angular momentum. This gives:

𝑚𝑔𝑙 sin 𝜃 = Ω𝐼𝑠𝜔𝑠 sin 𝜃
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Simplifying:
Ω = 𝑚𝑔𝑙

𝐼𝑠𝜔𝑠

Solving for the spin angular velocity:

𝜔𝑠 = 𝑚𝑔𝑙
𝐼𝑠Ω

The moment of inertia of a thin disc about its central axis is:

𝐼𝑠 = 1
2𝑚𝑅2 = 1

2 × 0.200 × (0.12)2 = 0.00144 kg ⋅ m2

Substituting the values:

𝜔𝑠 = 0.200 × 9.81 × 0.03
0.00144 × 2 = 0.05886

0.00288 = 20.44 rad/s

Verification: We can verify this makes physical sense: the high spin rate (20.44 rad/s) creates
sufficient angular momentum to maintain stable precession at the relatively low precession rate
(2 rad/s).

Conclusion: The spin angular speed of the top is approximately 20.4 rad/s. This demonstrates
the fundamental principle of gyroscopic motion where a rapidly spinning object can maintain
stable precession under the influence of gravity, forming the basis for many practical gyroscopic
applications listed above.
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