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51 Determine the location of the center of mass of a uniform
solid hemisphere of radius𝑅 andmass𝑀 from the center
of its base.

Introduction: We are to determine the vertical position of the center of mass of a uniform solid
hemisphere of radius 𝑅 and total mass 𝑀 . The center of mass for a solid body is calculated
using symmetry and volume integrals. Due to spherical symmetry about the vertical axis, the
center of mass lies on the central vertical axis. Hence, we only need to compute the 𝑧-coordinate
of the center of mass, measured from the flat circular base.

Solution:

Let the hemisphere be centered at the origin, such that the flat circular face lies in the 𝑥𝑦-plane
(𝑧 = 0) and the curved surface is in the region 𝑧 ≥ 0.
The center of mass in the 𝑧-direction is given by:

𝑧cm = 1
𝑀 ∫

𝑉
𝑧 𝜌 𝑑𝑉

where 𝜌 is the uniform density and 𝑀 = 𝜌𝑉 is the total mass.

Use spherical coordinates:

𝑥 = 𝑟 sin 𝜃 cos𝜙
𝑦 = 𝑟 sin 𝜃 sin𝜙
𝑧 = 𝑟 cos 𝜃

𝑑𝑉 = 𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜙

Limits for a hemisphere:

0 ≤ 𝑟 ≤ 𝑅, 0 ≤ 𝜃 ≤ 𝜋
2 , 0 ≤ 𝜙 ≤ 2𝜋

Compute the mass:

𝑀 = 𝜌 ∫
2𝜋

0
∫

𝜋/2

0
∫

𝑅

0
𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜙 = 𝜌 ⋅ 2𝜋 ⋅ ∫

𝜋/2

0
sin 𝜃 𝑑𝜃 ⋅ ∫

𝑅

0
𝑟2 𝑑𝑟

Evaluate:

∫
𝜋/2

0
sin 𝜃 𝑑𝜃 = 1, ∫

𝑅

0
𝑟2 𝑑𝑟 = 𝑅3

3

⇒ 𝑀 = 𝜌 ⋅ 2𝜋 ⋅ 1 ⋅ 𝑅3

3 = 2𝜋𝜌𝑅3

3
Now compute 𝑧cm:

𝑧cm = 1
𝑀 ∫

𝑉
𝑧 𝜌 𝑑𝑉 = 𝜌

𝑀 ∫
2𝜋

0
∫

𝜋/2

0
∫

𝑅

0
(𝑟 cos 𝜃) ⋅ 𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜙

= 𝜌
𝑀 ⋅ ∫

2𝜋

0
𝑑𝜙 ∫

𝜋/2

0
cos 𝜃 sin 𝜃 𝑑𝜃 ∫

𝑅

0
𝑟3 𝑑𝑟
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Evaluate:

∫
2𝜋

0
𝑑𝜙 = 2𝜋, ∫

𝜋/2

0
cos 𝜃 sin 𝜃 𝑑𝜃 = 1

2, ∫
𝑅

0
𝑟3 𝑑𝑟 = 𝑅4

4

So:

𝑧cm = 𝜌
𝑀 ⋅ 2𝜋 ⋅ 1

2 ⋅ 𝑅4

4 = 𝜌𝜋𝑅4

4𝑀

Substitute 𝑀 = 2𝜋𝜌𝑅3

3 :

𝑧cm = 𝜌𝜋𝑅4

4 ⋅ 2𝜋𝜌𝑅3
3

= 3𝑅
8

Conclusion: The center of mass of a uniform solid hemisphere of radius 𝑅 lies at a vertical

distance of
3𝑅
8 above the center of its flat base.
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52 Determine the location of the center of mass of a uniform
solid hemisphere of radius𝑅 andmass𝑀 from the center
of its base.

Introduction: We are asked to compute the vertical position of the center of mass of a uniform
solid hemisphere of radius 𝑅 and total mass 𝑀 , measured from the center of its flat circular
base. Due to symmetry, the center of mass lies along the vertical axis, and only its 𝑧-coordinate
(height) needs to be determined.

Solution:

Let us place the solid hemisphere such that its flat base lies in the 𝑥𝑦-plane (i.e., at 𝑧 = 0), and
the curved surface extends upward. In this setup, the vertical coordinate of the center of mass
is given by:

𝑧cm = 1
𝑀 ∫

𝑉
𝑧𝜌 𝑑𝑉

where 𝜌 is the uniform mass density and 𝑀 = 𝜌𝑉 is the total mass.

We use spherical coordinates:

𝑥 = 𝑟 sin 𝜃 cos𝜙
𝑦 = 𝑟 sin 𝜃 sin𝜙
𝑧 = 𝑟 cos 𝜃

𝑑𝑉 = 𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜙

The limits of integration for the upper hemisphere are:

0 ≤ 𝑟 ≤ 𝑅, 0 ≤ 𝜃 ≤ 𝜋
2 , 0 ≤ 𝜙 ≤ 2𝜋

Total mass:

𝑀 = 𝜌 ∫
2𝜋

0
∫

𝜋/2

0
∫

𝑅

0
𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜙

= 𝜌 ⋅ 2𝜋 ⋅ ∫
𝜋/2

0
sin 𝜃 𝑑𝜃 ⋅ ∫

𝑅

0
𝑟2 𝑑𝑟

= 𝜌 ⋅ 2𝜋 ⋅ (1) ⋅ (𝑅3

3 ) = 2𝜋𝜌𝑅3

3

Now compute 𝑧cm:

𝑧cm = 1
𝑀 ∫

𝑉
𝑧𝜌 𝑑𝑉 = 𝜌

𝑀 ∫
2𝜋

0
∫

𝜋/2

0
∫

𝑅

0
(𝑟 cos 𝜃)𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜙

= 𝜌
𝑀 ⋅ ∫

2𝜋

0
𝑑𝜙 ∫

𝜋/2

0
cos 𝜃 sin 𝜃 𝑑𝜃 ∫

𝑅

0
𝑟3 𝑑𝑟

4
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Evaluate each integral:

∫
2𝜋

0
𝑑𝜙 = 2𝜋, ∫

𝜋/2

0
cos 𝜃 sin 𝜃 𝑑𝜃 = 1

2, ∫
𝑅

0
𝑟3 𝑑𝑟 = 𝑅4

4

Thus:

𝑧cm = 𝜌
𝑀 ⋅ 2𝜋 ⋅ 1

2 ⋅ 𝑅4

4 = 𝜌𝜋𝑅4

4𝑀

Now substitute 𝑀 = 2𝜋𝜌𝑅3

3 :

𝑧cm = 𝜌𝜋𝑅4

4 ⋅ 2𝜋𝜌𝑅3
3

= 3𝑅
8

Conclusion: The center of mass of a uniform solid hemisphere of radius 𝑅 lies at a vertical

distance of
3𝑅
8 above the center of its flat base.
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53 Obtain expressions for the moment of inertia of a solid
cone about (i) its vertical axis and (ii) an axis passing through
its vertex and parallel to its base.

Introduction: We are to derive expressions for the moment of inertia of a uniform solid cone
of height 𝐻 , base radius 𝑅, and mass 𝑀 about two different axes:

(i) The vertical (symmetry) axis passing through the vertex and perpendicular to the base.

(ii) A horizontal axis through the vertex and parallel to the base (e.g., the 𝑥-axis if the cone’s
axis is aligned with 𝑧).

We assume the cone has uniform mass density, and we will perform integration in cylindrical
coordinates due to the axial symmetry of the geometry.

Solution:

Let the cone be aligned such that its vertex is at the origin and its axis lies along the 𝑧-axis. The
height is 𝐻 , and the base radius is 𝑅. The relation between radius and height at any 𝑧 is:

𝑟(𝑧) = 𝑅
𝐻 𝑧

Let the mass density be 𝜌 = 𝑀
𝑉 , with total volume:

𝑉 = 1
3𝜋𝑅2𝐻 ⇒ 𝜌 = 3𝑀

𝜋𝑅2𝐻

Use cylindrical coordinates (𝑟, 𝜙, 𝑧) with volume element:

𝑑𝑉 = 𝑟 𝑑𝑟 𝑑𝜙 𝑑𝑧

(i) Moment of inertia about the vertical axis (𝑧-axis):
The moment of inertia about the 𝑧-axis is given by:

𝐼𝑧 = ∫
𝑉

𝑟2 𝑑𝑚 = ∫
𝐻

0
∫

2𝜋

0
∫

𝑅
𝐻 𝑧

0
𝑟2 ⋅ 𝜌 𝑟 𝑑𝑟 𝑑𝜙 𝑑𝑧 = 𝜌 ∫

𝐻

0
∫

2𝜋

0
∫

𝑅
𝐻 𝑧

0
𝑟3 𝑑𝑟 𝑑𝜙 𝑑𝑧

Evaluate the integrals:

∫
𝑅
𝐻 𝑧

0
𝑟3 𝑑𝑟 = [𝑟4

4 ]
𝑅
𝐻 𝑧

0
= 1

4 ( 𝑅
𝐻 𝑧)

4

∫
2𝜋

0
𝑑𝜙 = 2𝜋

Then:

𝐼𝑧 = 𝜌 ⋅ 2𝜋 ⋅ ∫
𝐻

0

1
4 ( 𝑅

𝐻 )
4

𝑧4 𝑑𝑧 = 𝜌𝜋𝑅4

2𝐻4 ∫
𝐻

0
𝑧4 𝑑𝑧 = 𝜌𝜋𝑅4

2𝐻4 ⋅ 𝐻5

5 = 𝜌𝜋𝑅4𝐻
10

6
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Substitute 𝜌 = 3𝑀
𝜋𝑅2𝐻 :

𝐼𝑧 = 3𝑀
𝜋𝑅2𝐻 ⋅ 𝜋𝑅4𝐻

10 = 3
10𝑀𝑅2

(ii) Moment of inertia about a horizontal axis through the vertex (e.g., 𝑥-axis):
The moment of inertia about the 𝑥-axis involves the perpendicular distance squared:

𝐼𝑥 = ∫
𝑉

(𝑦2 + 𝑧2) 𝑑𝑚

In cylindrical coordinates: 𝑦 = 𝑟 sin𝜙, so 𝑦2 = 𝑟2 sin2 𝜙:

𝐼𝑥 = 𝜌 ∫
𝐻

0
∫

2𝜋

0
∫

𝑅
𝐻 𝑧

0
(𝑟2 sin2 𝜙 + 𝑧2)𝑟 𝑑𝑟 𝑑𝜙 𝑑𝑧

= 𝜌 ∫
𝐻

0
∫

2𝜋

0
[sin2 𝜙 ∫

𝑅
𝐻 𝑧

0
𝑟3 𝑑𝑟 + 𝑧2 ∫

𝑅
𝐻 𝑧

0
𝑟 𝑑𝑟] 𝑑𝜙 𝑑𝑧

Evaluate the 𝑟 integrals:

∫
𝑅
𝐻 𝑧

0
𝑟3 𝑑𝑟 = 1

4 ( 𝑅
𝐻 𝑧)

4

∫
𝑅
𝐻 𝑧

0
𝑟 𝑑𝑟 = 1

2 ( 𝑅
𝐻 𝑧)

2

So:

𝐼𝑥 = 𝜌 ∫
𝐻

0
[1

4 ( 𝑅
𝐻 𝑧)

4
∫

2𝜋

0
sin2 𝜙 𝑑𝜙 + 𝑧2

2 ( 𝑅
𝐻 𝑧)

2
∫

2𝜋

0
𝑑𝜙] 𝑑𝑧

Note that ∫2𝜋
0 sin2 𝜙 𝑑𝜙 = 𝜋 and ∫2𝜋

0 𝑑𝜙 = 2𝜋:

𝐼𝑥 = 𝜌 ∫
𝐻

0
[𝜋

4 ( 𝑅
𝐻 )

4
𝑧4 + 𝜋 ( 𝑅

𝐻 )
2

𝑧4] 𝑑𝑧

= 𝜌𝜋 ∫
𝐻

0
𝑧4 [1

4 ( 𝑅
𝐻 )

4
+ ( 𝑅

𝐻 )
2
] 𝑑𝑧

= 𝜌𝜋 [ 𝑅4

4𝐻4 + 𝑅2

𝐻2 ] ∫
𝐻

0
𝑧4 𝑑𝑧

= 𝜌𝜋 [ 𝑅4

4𝐻4 + 𝑅2

𝐻2 ] 𝐻5

5

= 𝜌𝜋𝑅4𝐻
20 + 𝜌𝜋𝑅2𝐻3

5

7
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Substitute 𝜌 = 3𝑀
𝜋𝑅2𝐻 :

𝐼𝑥 = 3𝑀
𝜋𝑅2𝐻 (𝜋𝑅4𝐻

20 + 𝜋𝑅2𝐻3

5 )

= 3𝑀𝑅2

20 + 3𝑀𝐻2

5

Conclusion:

(i) Moment of inertia about the vertical axis (symmetry axis):

𝐼𝑧 = 3
10𝑀𝑅2

(ii) Moment of inertia about a horizontal axis through the vertex:

𝐼𝑥 = 3
20𝑀𝑅2 + 3

5𝑀𝐻2

8
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54 An electron moves under the influence of a point nucleus
of atomic number 𝑍. Show that the orbit of the electron
is an ellipse.

Introduction: The problem involves analyzing the motion of an electron subjected to the
Coulomb force exerted by a nucleus with atomic number 𝑍. The electrostatic force acts as
a central force, which is attractive and varies inversely with the square of the distance between
the electron and the nucleus. We are to demonstrate that the resulting trajectory of the electron
is an elliptical orbit.

We assume:

(i) The nucleus is stationary and infinitely more massive than the electron.

(ii) Relativistic and quantum mechanical effects are neglected; a classical mechanics treat-
ment suffices.

(iii) The electron is bound, i.e., its total mechanical energy is negative.

Solution:

The force on the electron due to the nucleus is the Coulomb force:

⃗𝐹 = − 1
4𝜋𝜀0

⋅ 𝑍𝑒2

𝑟2 ̂𝑟

This is a central inverse-square law force with potential energy:

𝑈(𝑟) = − 1
4𝜋𝜀0

⋅ 𝑍𝑒2

𝑟

The total energy of the system is:

𝐸 = 1
2𝑚𝑣2 − 1

4𝜋𝜀0
⋅ 𝑍𝑒2

𝑟

For central force motion, angular momentum is conserved:

𝐿 = 𝑚𝑟2 ̇𝜃 = constant

Using the effective potential approach, we can write the radial equation of motion:

1
2𝑚 ̇𝑟2 + 𝑈eff(𝑟) = 𝐸

where the effective potential is:

𝑈eff(𝑟) = − 1
4𝜋𝜀0

⋅ 𝑍𝑒2

𝑟 + 𝐿2

2𝑚𝑟2

9
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To find the orbit equation, we use the substitution 𝑢 = 1
𝑟 and the relation:

𝑑𝑟
𝑑𝜃 = − 1

𝑢2
𝑑𝑢
𝑑𝜃

From 𝐿 = 𝑚𝑟2 ̇𝜃, we get:
̇𝜃 = 𝐿

𝑚𝑟2 = 𝐿𝑢2

𝑚

Also, ̇𝑟 = 𝑑𝑟
𝑑𝑡 = 𝑑𝑟

𝑑𝜃
𝑑𝜃
𝑑𝑡 = − 1

𝑢2
𝑑𝑢
𝑑𝜃 ⋅ 𝐿𝑢2

𝑚 = − 𝐿
𝑚

𝑑𝑢
𝑑𝜃

Substituting into the energy equation:

1
2𝑚 (− 𝐿

𝑚
𝑑𝑢
𝑑𝜃 )

2
+ 𝐿2𝑢2

2𝑚 − 1
4𝜋𝜀0

⋅ 𝑍𝑒2𝑢 = 𝐸

Simplifying:
𝐿2

2𝑚 (𝑑𝑢
𝑑𝜃 )

2
+ 𝐿2𝑢2

2𝑚 − 1
4𝜋𝜀0

⋅ 𝑍𝑒2𝑢 = 𝐸

Multiplying through by 2𝑚
𝐿2 :

(𝑑𝑢
𝑑𝜃 )

2
+ 𝑢2 − 2𝑚𝑍𝑒2

4𝜋𝜀0𝐿2 𝑢 = 2𝑚𝐸
𝐿2

Let 𝑘 = 𝑚𝑍𝑒2
4𝜋𝜀0𝐿2 . Differentiating with respect to 𝜃:

2𝑑𝑢
𝑑𝜃

𝑑2𝑢
𝑑𝜃2 + 2𝑢𝑑𝑢

𝑑𝜃 − 2𝑘𝑑𝑢
𝑑𝜃 = 0

Dividing by 2𝑑𝑢
𝑑𝜃 (assuming 𝑑𝑢

𝑑𝜃 ≠ 0):

𝑑2𝑢
𝑑𝜃2 + 𝑢 − 𝑘 = 0

This gives us the orbit equation:

𝑑2𝑢
𝑑𝜃2 + 𝑢 = 𝑘 = 𝑚𝑍𝑒2

4𝜋𝜀0𝐿2

This is a second-order linear differential equation with constant coefficients. The general solu-
tion is:

𝑢(𝜃) = 𝐴 cos(𝜃 − 𝜃0) + 𝑘

where 𝐴 and 𝜃0 are constants determined by initial conditions.

Converting back to 𝑟:
𝑟(𝜃) = 1

𝐴 cos(𝜃 − 𝜃0) + 𝑘

10
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Choosing 𝜃0 = 0 for simplicity:

𝑟(𝜃) = 1
𝐴 cos 𝜃 + 𝑘 = 1/𝑘

(𝐴/𝑘) cos 𝜃 + 1

Let 𝑒 = 𝐴/𝑘 (the eccentricity) and 𝑝 = 1/𝑘 (the semi-latus rectum):

𝑟(𝜃) = 𝑝
1 + 𝑒 cos 𝜃

This is the standard polar equation of a conic section with one focus at the origin.

To determine the relationship between eccentricity and energy, we use the energy equation. At
the turning points where ̇𝑟 = 0:

𝐸 = 𝐿2𝑢2

2𝑚 − 1
4𝜋𝜀0

⋅ 𝑍𝑒2𝑢

Substituting 𝑢 = 𝐴 cos 𝜃 + 𝑘:

𝐸 = 𝐿2(𝐴 cos 𝜃 + 𝑘)2

2𝑚 − 𝑍𝑒2

4𝜋𝜀0
(𝐴 cos 𝜃 + 𝑘)

After algebraic manipulation, we can show that:

𝑒2 = 1 + 2𝐸𝐿2

𝑚 (4𝜋𝜀0
𝑍𝑒2 )

2

For bound orbits, 𝐸 < 0, which gives:

𝑒2 = 1 − 2|𝐸|𝐿2

𝑚 (4𝜋𝜀0
𝑍𝑒2 )

2
< 1

Therefore, 𝑒 < 1, confirming that the orbit is an ellipse.
Conclusion: Under the influence of the attractive Coulomb force from a point nucleus, the
electron follows an orbit described by 𝑟(𝜃) = 𝑝

1+𝑒 cos 𝜃 . For bound states (negative total energy),
the eccentricity 𝑒 < 1, proving that the trajectory is an ellipse with the nucleus at one focus.

11
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55 For a homogeneous right triangular pyramid with base
side 𝑎 and height 3𝑎

2 . Obtain the moment of inertia tensor
of the pyramid.

Introduction: We need to determine the moment of inertia tensor of a homogeneous right
triangular pyramid (tetrahedron) about the origin (0, 0, 0). The pyramid has four vertices:

• (0, 0, 0) - at the origin
• (𝑎, 0, 0) - on the positive 𝑥-axis
• (0, 𝑎, 0) - on the positive 𝑦-axis
• (0, 0, 3𝑎

2 ) - on the positive 𝑧-axis
The pyramid is homogeneous with constant mass density 𝜌 and total mass 𝑀 . We need to find
the 3 × 3 moment of inertia tensor 𝐼𝑖𝑗 about the origin using triple integration. The moment of
inertia tensor components are defined as:

𝐼𝑖𝑗 = ∭
𝑉

𝜌(𝛿𝑖𝑗𝑟2 − 𝑥𝑖𝑥𝑗) 𝑑𝑉

where 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2, 𝛿𝑖𝑗 is the Kronecker delta, and the integration is over the volume 𝑉
of the tetrahedron.

Solution:

Step 1: Establish the integration limits

The tetrahedron is bounded by four planes:

• 𝑥 = 0 (yz-plane)

• 𝑦 = 0 (xz-plane)

• 𝑧 = 0 (xy-plane)

12
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• The slanted face connecting the three non-origin vertices

The equation of the slanted face can be found using the three points (𝑎, 0, 0), (0, 𝑎, 0), and
(0, 0, 3𝑎

2 ). The plane equation is:
𝑥
𝑎 + 𝑦

𝑎 + 𝑧
3𝑎
2

= 1

Simplifying: 𝑥
𝑎 + 𝑦

𝑎 + 2𝑧
3𝑎 = 1, or 𝑥 + 𝑦 + 2𝑧

3 = 𝑎
Solving for 𝑥: 𝑥 = 𝑎 − 𝑦 − 2𝑧

3

Therefore, the integration limits are:

𝑧 ∶ 0 → 3𝑎
2 (1)

𝑦 ∶ 0 → 𝑎 − 2𝑧
3 (2)

𝑥 ∶ 0 → 𝑎 − 𝑦 − 2𝑧
3 (3)

Step 2: Calculate the total mass and density relationship

The total mass is:

𝑀 = ∭
𝑉

𝜌 𝑑𝑉 = 𝜌 ∫
3𝑎/2

0
∫

𝑎−2𝑧/3

0
∫

𝑎−𝑦−2𝑧/3

0
𝑑𝑥 𝑑𝑦 𝑑𝑧

𝑀 = 𝜌 ∫
3𝑎/2

0
∫

𝑎−2𝑧/3

0
(𝑎 − 𝑦 − 2𝑧

3 ) 𝑑𝑦 𝑑𝑧

𝑀 = 𝜌 ∫
3𝑎/2

0
[𝑎𝑦 − 𝑦2

2 − 2𝑧
3 𝑦]

𝑎−2𝑧/3

0
𝑑𝑧

𝑀 = 𝜌 ∫
3𝑎/2

0
[𝑎(𝑎 − 2𝑧

3 ) − 1
2(𝑎 − 2𝑧

3 )2 − 2𝑧
3 (𝑎 − 2𝑧

3 )] 𝑑𝑧

𝑀 = 𝜌 ∫
3𝑎/2

0

1
2(𝑎 − 2𝑧

3 )2 𝑑𝑧

Let 𝑢 = 𝑎 − 2𝑧
3 , then 𝑑𝑢 = −2

3𝑑𝑧, so 𝑑𝑧 = −3
2𝑑𝑢

When 𝑧 = 0, 𝑢 = 𝑎; when 𝑧 = 3𝑎
2 , 𝑢 = 0

𝑀 = 𝜌 ⋅ 1
2 ∫

0

𝑎
𝑢2 (−3

2) 𝑑𝑢 = 3𝜌
4 ∫

𝑎

0
𝑢2 𝑑𝑢 = 3𝜌

4 ⋅ 𝑎3

3 = 𝜌𝑎3

4

Therefore: 𝜌 = 4𝑀
𝑎3

Step 3: Set up the moment of inertia tensor

13
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The moment of inertia tensor has the form:

𝐼𝑖𝑗 = ∭
𝑉

𝜌 ⎛⎜
⎝

𝑦2 + 𝑧2 −𝑥𝑦 −𝑥𝑧
−𝑥𝑦 𝑥2 + 𝑧2 −𝑦𝑧
−𝑥𝑧 −𝑦𝑧 𝑥2 + 𝑦2

⎞⎟
⎠

𝑑𝑉

Step 4: Calculate each tensor component

For 𝐼11 = ∭𝑉 𝜌(𝑦2 + 𝑧2) 𝑑𝑉 :

𝐼11 = 𝜌 ∫
3𝑎/2

0
∫

𝑎−2𝑧/3

0
∫

𝑎−𝑦−2𝑧/3

0
(𝑦2 + 𝑧2) 𝑑𝑥 𝑑𝑦 𝑑𝑧

𝐼11 = 𝜌 ∫
3𝑎/2

0
∫

𝑎−2𝑧/3

0
(𝑦2 + 𝑧2)(𝑎 − 𝑦 − 2𝑧

3 ) 𝑑𝑦 𝑑𝑧

After completing the integration:

𝐼11 = 13𝑀𝑎2

40
By symmetry between 𝑥 and 𝑦 coordinates:

𝐼22 = 13𝑀𝑎2

40

For 𝐼33 = ∭𝑉 𝜌(𝑥2 + 𝑦2) 𝑑𝑉 :

𝐼33 = 𝜌 ∫
3𝑎/2

0
∫

𝑎−2𝑧/3

0
∫

𝑎−𝑦−2𝑧/3

0
(𝑥2 + 𝑦2) 𝑑𝑥 𝑑𝑦 𝑑𝑧

After integration:

𝐼33 = 8𝑀𝑎2

40 = 𝑀𝑎2

5
For the off-diagonal terms:

𝐼12 = 𝐼21 = − ∭
𝑉

𝜌𝑥𝑦 𝑑𝑉 = −2𝑀𝑎2

40 = −𝑀𝑎2

20

𝐼13 = 𝐼31 = − ∭
𝑉

𝜌𝑥𝑧 𝑑𝑉 = −3𝑀𝑎2

40

𝐼23 = 𝐼32 = − ∭
𝑉

𝜌𝑦𝑧 𝑑𝑉 = −3𝑀𝑎2

40

Step 5: Assemble the complete tensor

14
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The moment of inertia tensor is:

𝐼𝑖𝑗 = 𝑀𝑎2

40
⎛⎜
⎝

13 −2 −3
−2 13 −3
−3 −3 8

⎞⎟
⎠

Conclusion: The moment of inertia tensor of the homogeneous right triangular pyramid about
the origin is:

𝐼 = 𝑀𝑎2

40
⎛⎜
⎝

13 −2 −3
−2 13 −3
−3 −3 8

⎞⎟
⎠

The tensor has units of mass × length2 and is symmetric as expected. The diagonal terms rep-
resent the moments of inertia about the coordinate axes, while the off-diagonal terms are the
products of inertia. All off-diagonal terms are negative, reflecting the geometry of the tetrahe-
dron where mass is distributed in the positive octant. The 𝐼33 component is smaller than 𝐼11
and 𝐼22 because the pyramid’s height along the 𝑧-axis concentrates more mass closer to the
𝑥𝑦-plane, reducing the moment of inertia about the 𝑧-axis compared to the 𝑥 and 𝑦 axes.

15
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56 When a sphere of radius 𝑟 falls through a homogeneous
viscous fluid of unlimited extent with terminal velocity 𝑣,
the retarding viscous force acting on the sphere depends
on the coefficient of viscosity 𝜂, the radius 𝑟, and its veloc-
ity 𝑣. Show how Stokes’ law was arrived at by connecting
these quantities using dimensional analysis.

Introduction: We are given that the retarding viscous force𝐹 acting on a sphere falling through
a viscous fluid at terminal velocity depends on three quantities: the viscosity 𝜂 of the fluid,
the radius 𝑟 of the sphere, and the velocity 𝑣 of the sphere. Our objective is to determine the
functional form of this force using dimensional analysis. The resulting expression, known as
Stokes’ law, relates 𝐹 to these physical parameters via dimensional consistency.

Solution: Let the retarding force 𝐹 be expressed as a product of the involved variables raised
to unknown powers:

𝐹 ∝ 𝜂𝑎𝑟𝑏𝑣𝑐.
We express the dimensions of each quantity using the MLT (Mass–Length–Time) system:

[𝐹 ] = force = 𝑀𝐿𝑇 −2,
[𝜂] = viscosity = 𝑀𝐿−1𝑇 −1,
[𝑟] = 𝐿,
[𝑣] = 𝐿𝑇 −1.

Substituting into the dimensional equation:

𝑀𝐿𝑇 −2 = (𝑀𝐿−1𝑇 −1)𝑎 ⋅ (𝐿)𝑏 ⋅ (𝐿𝑇 −1)𝑐.

Simplifying the right-hand side:

RHS = 𝑀𝑎𝐿−𝑎𝑇 −𝑎 ⋅ 𝐿𝑏 ⋅ 𝐿𝑐𝑇 −𝑐 = 𝑀𝑎𝐿−𝑎+𝑏+𝑐𝑇 −𝑎−𝑐.

Now equate powers of 𝑀 , 𝐿, and 𝑇 on both sides:

Mass (M): 𝑎 = 1,
Length (L): − 𝑎 + 𝑏 + 𝑐 = 1,
Time (T): − 𝑎 − 𝑐 = −2.

Substituting 𝑎 = 1 into the other equations:

Length: − 1 + 𝑏 + 𝑐 = 1 ⇒ 𝑏 + 𝑐 = 2,
Time: − 1 − 𝑐 = −2 ⇒ 𝑐 = 1.

Then:
𝑏 = 2 − 𝑐 = 2 − 1 = 1.

Thus, the values of the exponents are:

𝑎 = 1, 𝑏 = 1, 𝑐 = 1.

16
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Therefore,
𝐹 ∝ 𝜂𝑟𝑣.

Introducing a dimensionless constant of proportionality 𝑘, we write:

𝐹 = 𝑘𝜂𝑟𝑣.

Experimentally, Stokes found that 𝑘 = 6𝜋 for slow (laminar) motion of a sphere through a
viscous fluid. Hence, the final form of Stokes’ law is:

𝐹 = 6𝜋𝜂𝑟𝑣.

Conclusion: By dimensional analysis, the retarding force on a sphere moving through a viscous
fluid is found to be proportional to 𝜂𝑟𝑣. The complete expression known from experiment as
Stokes’ law is:

𝐹 = 6𝜋𝜂𝑟𝑣.
This law is valid for small Reynolds numbers, i.e., in the regime of laminar flow.

17
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57 A sphere of radius 𝑅 moves with velocity 𝑢⃗ in an incom-
pressible, non-viscous ideal fluid. Calculate the pressure
distribution over the surface of the sphere. Do you think
that a force is necessary to keep the sphere in uniformmo-
tion?

Introduction: We analyze a sphere of radius 𝑅 moving with uniform velocity 𝑢⃗ through an
incompressible, inviscid (ideal) fluid. Our objectives are:

1. determine the pressure distribution over the sphere’s surface, and

2. evaluate whether a net force is required to maintain uniform motion.

This classic problem in fluid mechanics involves potential flow theory and leads to the famous
D’Alembert’s paradox.

Solution:

Step 1: Establish the flow problem We work in the reference frame where the sphere is sta-
tionary and fluid flows past it with velocity −𝑢⃗ at infinity. The flow is steady, incompressible,
irrotational, and inviscid, making it a potential flow problem.

Step 2: Derive the velocity potential For flow past a sphere, we need a potential that satisfies:

• Laplace equation: ∇2𝜙 = 0
• Boundary condition at infinity: ⃗𝑣 → −𝑢 ̂𝑧 as 𝑟 → ∞
• No-penetration condition: 𝑣𝑟 = 0 at 𝑟 = 𝑅

The solution combines uniform flow and a dipole:

𝜙 = −𝑢𝑟 cos 𝜃 + 𝐴
𝑟2 cos 𝜃

Applying the boundary condition 𝑣𝑟(𝑅, 𝜃) = 0:

𝑣𝑟 = 𝜕𝜙
𝜕𝑟 = −𝑢 cos 𝜃 − 2𝐴

𝑟3 cos 𝜃 = 0 at 𝑟 = 𝑅

This gives: −𝑢 − 2𝐴
𝑅3 = 0, so 𝐴 = −𝑢𝑅3

2

Therefore, the velocity potential is:

𝜙 = −𝑢 (𝑟 + 𝑅3

2𝑟2 ) cos 𝜃

Step 3: Calculate velocity components The velocity field ⃗𝑣 = ∇𝜙 in spherical coordinates
gives:

𝑣𝑟 = 𝜕𝜙
𝜕𝑟 = −𝑢 (1 − 𝑅3

𝑟3 ) cos 𝜃

𝑣𝜃 = 1
𝑟

𝜕𝜙
𝜕𝜃 = 𝑢 (1 + 𝑅3

2𝑟3 ) sin 𝜃

18
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On the sphere surface (𝑟 = 𝑅):

𝑣𝑟(𝑅, 𝜃) = 0 (no-penetration condition satisfied)

𝑣𝜃(𝑅, 𝜃) = 3𝑢
2 sin 𝜃

The speed squared on the surface is:

𝑣2(𝑅, 𝜃) = 𝑣2
𝑟 + 𝑣2

𝜃 = 9𝑢2

4 sin2 𝜃

Step 4: Apply Bernoulli’s equation For steady, incompressible, irrotational flow:
1
2𝜌𝑣2 + 𝑝 = 1

2𝜌𝑢2 + 𝑝∞ = constant

The pressure on the sphere surface is:

𝑝(𝑅, 𝜃) = 𝑝∞ + 1
2𝜌(𝑢2 − 𝑣2(𝑅, 𝜃))

= 𝑝∞ + 1
2𝜌𝑢2 (1 − 9

4 sin2 𝜃)

Step 5: Calculate the drag force The drag force in the 𝑧-direction (direction of motion) is:

𝐹𝐷 = − ∫
surface

𝑝(𝑅, 𝜃) cos 𝜃 𝑑𝐴

where 𝑑𝐴 = 𝑅2 sin 𝜃 𝑑𝜃 𝑑𝜙 and the integral is over the sphere surface.

𝐹𝐷 = − ∫
2𝜋

0
𝑑𝜙 ∫

𝜋

0
𝑝(𝑅, 𝜃) cos 𝜃 ⋅ 𝑅2 sin 𝜃 𝑑𝜃

Substituting the pressure distribution:

𝐹𝐷 = −2𝜋𝑅2 ∫
𝜋

0
[𝑝∞ + 1

2𝜌𝑢2 (1 − 9
4 sin2 𝜃)] cos 𝜃 sin 𝜃 𝑑𝜃

The first term integrates to zero: ∫𝜋
0 cos 𝜃 sin 𝜃 𝑑𝜃 = 0

For the second term:

∫
𝜋

0
cos 𝜃 sin 𝜃 𝑑𝜃 = 0 and ∫

𝜋

0
cos 𝜃 sin3 𝜃 𝑑𝜃 = 0

Both integrals vanish due to symmetry, therefore: 𝐹𝐷 = 0
Conclusion: The pressure distribution over the sphere’s surface is:

𝑝(𝑅, 𝜃) = 𝑝∞ + 1
2𝜌𝑢2 (1 − 9

4 sin2 𝜃)

Despite this non-uniform pressure distribution, the net drag force is zero due to the symmetric
nature of the flow. Therefore, no force is required to maintain uniform motion of the sphere
in an ideal fluid. This counterintuitive result is known as D’Alembert’s paradox. In reality,
viscous effects in real fluids create drag, requiring a continuous force to maintain steady motion.
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58 Using Poiseuilleś formula, show that the volume of a liq-
uid with viscosity 𝜂 passing per second through a series of
two capillary tubes of lengths 𝑙1 and 𝑙2 with radii 𝑟1 and

𝑟2 is given by 𝑄 = 𝜋𝑝
8𝜂 [ 𝑙1

𝑟4
1

+ 𝑙2
𝑟4
2
]

−1
, where 𝑝 is the effective

pressure difference across the series.
Introduction: The problem asks us to derive the formula for the volume flow rate𝑄 of a viscous
liquid through two capillary tubes connected in series using Poiseuille’s law. The tubes have
different lengths 𝑙1, 𝑙2 and radii 𝑟1, 𝑟2. The liquid has dynamic viscosity 𝜂, and the pressure
drop across the entire system is 𝑝. We assume steady laminar flow and incompressibility of the
liquid.

Solution:

Poiseuille’s law for a single tube states that the volume flow rate 𝑄 through a cylindrical tube
is given by:

𝑄 = 𝜋𝑟4Δ𝑝
8𝜂𝑙

Rewriting this to express pressure drop in terms of flow rate:

Δ𝑝 = 8𝜂𝑙
𝜋𝑟4 𝑄

Let the pressure drop across the first and second tubes be Δ𝑝1 and Δ𝑝2, respectively. Then:

Δ𝑝1 = 8𝜂𝑙1
𝜋𝑟4

1
𝑄, Δ𝑝2 = 8𝜂𝑙2

𝜋𝑟4
2

𝑄

Since the tubes are in series, the same flow rate 𝑄 passes through both, and the total pressure
drop is the sum:

𝑝 = Δ𝑝1 + Δ𝑝2 = (8𝜂𝑙1
𝜋𝑟4

1
+ 8𝜂𝑙2

𝜋𝑟4
2

) 𝑄

Solving for 𝑄:

𝑄 = 𝑝
8𝜂𝑙1
𝜋𝑟4

1
+ 8𝜂𝑙2

𝜋𝑟4
2

= 𝜋𝑝
8𝜂 ( 𝑙1

𝑟4
1

+ 𝑙2
𝑟4

2
)

−1

Conclusion: We have derived that the volume flow rate 𝑄 for a viscous liquid flowing through
two capillary tubes in series is:
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𝑄 = 𝜋𝑝
8𝜂 [ 𝑙1

𝑟4
1

+ 𝑙2
𝑟4

2
]

−1

This result shows that the total resistance to flow in series adds up analogously to electrical
resistances, with each tube contributing a term proportional to 𝑙

𝑟4 .
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59 Define coefficients of viscosity and kinematic viscosity of
a fluid. What are Poise and Stokes?

Introduction: This problem involves defining two important physical quantities that describe
the flow behavior of fluids: the coefficient of viscosity (also known as dynamic viscosity or
absolute viscosity) and kinematic viscosity. Additionally, we are asked to describe the units
known as Poise and Stokes, which are associated with these viscosities.

Solution:

1. Coefficient of Viscosity (Dynamic Viscosity):

The coefficient of viscosity, denoted by 𝜂 (or 𝜇), quantifies a fluid’s internal resistance to
flow due to molecular interactions. It is defined by Newton’s law of viscosity:

𝜏 = 𝜂𝑑𝑣
𝑑𝑦

or equivalently, for the force on a surface:

𝐹 = 𝜂𝐴𝑑𝑣
𝑑𝑦

where:

• 𝜏 is the shear stress,

• 𝐹 is the tangential force,

• 𝐴 is the area of the layer,

• 𝑑𝑣
𝑑𝑦 is the velocity gradient perpendicular to the direction of flow.

The SI unit of 𝜂 is Pa ⋅ s or N ⋅ s/m2. In the CGS system, it is measured in Poise.

1 Poise = 1 g ⋅ cm−1 ⋅ s−1 = 0.1 Pa ⋅ s.
2. Kinematic Viscosity:

Kinematic viscosity, denoted by 𝜈, is defined as the ratio of dynamic viscosity to the fluid
density 𝜌:

𝜈 = 𝜂
𝜌

It represents the ratio of viscous forces to inertial forces in fluid flow and characterizes
how quickly momentum diffuses through the fluid. The SI unit of kinematic viscosity is
m2/s, and in the CGS system, it is measured in Stokes.

1 Stokes = 1 cm2/s = 10−4 m2/s.
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Conclusion:

The coefficient of viscosity 𝜂 measures a fluid’s resistance to shear deformation and has units
of Poise (CGS) or Pascal-seconds (SI). Kinematic viscosity 𝜈 is the ratio of viscosity to density,
representing the momentum diffusivity of the fluid, and is measured in Stokes (CGS) or m2/s
(SI). These parameters are essential in fluid dynamics for characterizing flow behavior and
appear in dimensionless numbers like the Reynolds number.
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60 Write down Poiseuille’s formula and mention its limita-
tions in analyzing the flow of a liquid through a capillary
tube.

Introduction: This problem requires stating Poiseuille’s formula, which quantifies the vol-
umetric flow rate of a viscous incompressible fluid through a cylindrical capillary tube. We
are also asked to outline the conditions under which this formula is valid and its limitations in
practical applications.

Solution:

Poiseuille’s Formula:

For steady, laminar, incompressible, and Newtonian flow through a cylindrical capillary tube,
the volume of liquid flowing per unit time (volume flow rate 𝑄) is given by:

𝑄 = 𝜋𝑟4Δ𝑝
8𝜂𝑙

where:

• 𝑄 is the volume flow rate,

• 𝑟 is the radius of the capillary tube,
• 𝑙 is the length of the tube,
• Δ𝑝 is the pressure difference across the tube,

• 𝜂 is the dynamic viscosity of the fluid.

Limitations of Poiseuille’s Formula:

(i) The formula is valid only for laminar flow, typically when the Reynolds number is less
than 2000.

(ii) It assumes the fluid is Newtonian (constant viscosity irrespective of strain rate).

(iii) The flow must be steady and incompressible.

(iv) It assumes no-slip boundary condition at the tube wall.

(v) It neglects end effects (entry and exit regions where flow is not fully developed).

(vi) It is not applicable when gravitational effects or external fields significantly influence
flow.

(vii) The tube must be uniform and cylindrical, with smooth inner walls.

Conclusion:

Poiseuille’s formula is a foundational result in fluid mechanics that accurately models viscous
flow through narrow tubes under ideal conditions. However, its application is limited by as-
sumptions such as laminar flow, Newtonian behavior, steady conditions, and neglect of entrance
and exit effects. Care must be taken when applying this formula in real-world systems where
these conditions may not hold.
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