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Quantum Mechanics - Part 1
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1 Derive Bohr’s angular momentum quantization con-
dition in Bohr’s atomic model from the concept of de
Broglie waves. (2010)

Introduction: Bohr’s atomic model introduces the concept of quantized angular
momentum for electrons orbiting the nucleus. This concept is fundamentally linked
to the wave nature of electrons as described by de Broglie.

Solution: According to de Broglie, the wavelength of an electron is given by:

λ =
h

p

where h is Planck’s constant and p is the momentum of the electron.

Nucleus

Radius r

Wavelength λ

Figure 1: Quantization of angular
momentum

For an electron in a circular orbit of radius r,
the circumference must be an integral multiple
of the de Broglie wavelength:

2πr = nλ

Substituting the de Broglie wavelength:

2πr = n
h

p

Since p = mv for an electron of mass m and
velocity v:

2πr = n
h

mv

Rearranging for the angular momentum L:

L = mvr = n
h

2π

Thus, the angular momentum is quantized:

L = nh̄

where h̄ = h
2π .

Conclusion: Bohr’s quantization of angular momentum provides a fundamental
insight into the discrete nature of atomic energy levels, leading to the explanation
of atomic spectra.
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2 Calculate the wavelength of de Broglie waves associ-
ated with electrons accelerated through a potential
difference of 200 Volts. (2011)

Introduction: The concept of de Broglie wavelength states that a particle also
behaves as a wave, whose wavelength can be calculated when they are accelerated
by a known potential difference.

Solution: The kinetic energy gained by the electron is:

eV =
1

2
mv2

where e is the electron charge, V is the potential difference, m is the electron mass,
and v is the velocity.

Rearranging for v:

v =

√
2eV

m

The de Broglie wavelength is given by:

λ =
h

mv

Substituting v:
λ =

h

m
√

2eV
m

=
h√

2meV

Using h = 6.626× 10−34 Js, m = 9.109× 10−31 kg, and e = 1.602× 10−19 C:

λ =
6.626× 10−34

√
2× 9.109× 10−31 × 1.602× 10−19 × 200

λ ≈ 8.6× 10−12 meters

Conclusion: The wavelength of de Broglie waves associated with electrons accel-
erated through 200 Volts is approximately 8.6× 10−12 meters, which highlights the
wave nature of electrons at the atomic scale.
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3 Estimate the size of the hydrogen atom and the ground
state energy from the uncertainty principle

Introduction: We aim to estimate the characteristic size of the hydrogen atom and
its ground state energy using Heisenberg’s uncertainty principle. We will model the
electron bound to the proton via Coulomb attraction, and apply quantum mechan-
ical uncertainty relations to find approximate expressions for both the radius and
the minimum energy of the electron in its ground state.

Given:

We estimate the electrons position uncertainty as the size of the atom r, and relate
the momentum uncertainty ∆p via the uncertainty relation ∆x∆p ∼ h̄.

Solution:

From the uncertainty principle:

∆x∆p ∼ h̄⇒ ∆p ∼ h̄

r

Assuming ∆p ∼ p, we estimate the kinetic energy as:

K ∼ p2

2me
∼ h̄2

2mer2

The potential energy due to the Coulomb attraction between electron and proton
is:

U ∼ −kee
2

r

Hence, the total energy is approximately:

E(r) ∼ h̄2

2mer2
− kee

2

r

To find the equilibrium (minimum energy), we differentiate E(r) with respect to r
and set to zero:

dE

dr
= − h̄2

mer3
+
kee

2

r2
= 0

Solving:
h̄2

mer3
=
kee

2

r2
⇒ r =

h̄2

mekee2

Substituting values:

r =
(1.05× 10−34)2

(9.11× 10−31)(8.99× 109)(1.60× 10−19)2

Calculating:

r ≈ 1.10× 10−68

(9.11× 10−31)(8.99× 109)(2.56× 10−38)

≈ 1.10× 10−68

2.09× 10−58

≈ 5.26× 10−11 m
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This is approximately the Bohr radius.

Now substitute r back into E(r) to get the ground state energy:

E ≈ h̄2

2mer2
− kee

2

r

Compute each term:

h̄2

2mer2
≈ 1.10× 10−68

2 · 9.11× 10−31 · (5.26× 10−11)2
≈ 2.18× 10−18 J

kee
2

r
≈ 8.99× 109 · (1.60× 10−19)2

5.26× 10−11
≈ 4.36× 10−18 J

Thus,
E ≈ 2.18× 10−18 − 4.36× 10−18 = −2.18× 10−18 J

Convert to electronvolts:

E ≈ −2.18× 10−18 J
1.60× 10−19 J/eV

≈ −13.6 eV

Conclusion:

Using the uncertainty principle, we estimate:

• The size (radius) of the hydrogen atom: r ≈ 5.26× 10−11 m (Bohr radius)

• The ground state energy: E0 ≈ −13.6 eV

These estimates agree remarkably well with the results from the full quantum me-
chanical treatment of the hydrogen atom, illustrating the power of the uncertainty
principle in deriving fundamental atomic properties.
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4 Use the uncertainty principle to estimate the ground
state energy of a linear harmonic oscillator. (2012)

Introduction: The uncertainty principle, formulated by Werner Heisenberg, states
that two conjugate pair (which do not commute) in quantum mechanics can never
be precisely measured simultaneously. In this case it states that energy and time
cant be exactly determined simultaneously.

Solution: For a harmonic oscillator, the potential energy is given by:

V (x) =
1

2
kx2

The total energy E in the ground state is:

E =
p2

2m
+

1

2
kx2

Using the uncertainty principle ∆x∆p ≥ h̄
2 , we set ∆p ≈ p and ∆x ≈ x:

x · p ≥ h̄

2
⇒ p ≥ h̄

2x

Substituting into the energy expression:

E ≥ (h̄/2x)2

2m
+

1

2
kx2

Minimizing E with respect to x:

E =
h̄2

8mx2
+

1

2
kx2

Setting the derivative dE
dx = 0:

− h̄2

4mx3
+ kx = 0 ⇒ x4 =

h̄2

4mk
⇒ x2 =

h̄

2
√
mk

Substituting x2 back into E:

E =
h̄2

8m · h̄
2
√
mk

+
1

2
k · h̄

2
√
mk

E =
h̄
√
k/m

4
+
h̄
√
k/m

4
=
h̄ω

2

where ω =
√
k/m.

Conclusion: The ground state energy of a linear harmonic oscillator is h̄ω
2 , demon-

strating the zero-point energy due to quantum fluctuations. Because of the
zero-point energy, the position and momentum of the oscillator in the ground state
are not fixed (as they would be in a classical oscillator), but have a small range of
variance, in accordance with the Heisenberg uncertainty principle.
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5 In a series of experiments on the determination of
the mass of a certain elementary particle, the results
showed a variation of ±20me, where me is the electron
mass. Estimate the lifetime of the particle. (2013)

Introduction: The uncertainty principle, formulated by Werner Heisenberg, states
that two conjugate pair(which do not commute) in quantum mechanics can never
be precisely measured simultaneously. In this case it states that energy and time
cant be exactly determined simultaneously.

Solution: Given the mass uncertainty ∆m = ±20me, where me is the electron
mass, we use the energy-time uncertainty principle:

∆E∆t ≥ h̄

2

The energy uncertainty ∆E can be related to the mass uncertainty ∆m through
E = mc2:

∆E = ∆mc2

Substituting ∆m = 40me:
∆E = 40mec

2

Using the uncertainty principle:

40mec
2∆t ≥ h̄

2

∆t ≥ h̄

2 · 40mec2

∆t ≥ h̄

80mec2

Given h̄ ≈ 1.054× 10−34 Js and mec
2 ≈ 8.187× 10−14 J:

∆t ≥ 1.054× 10−34

80× 8.187× 10−14

∆t ≥ 1.61× 10−23 s

Conclusion: The estimated lifetime of the particle, based on its mass uncertainty,
is 1.61×10−23 s. It decays via a week force into a nucleon and a pion which
highlights the precision required in high-energy physics experiments and
the stability of the Lambda particle.
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6 Find the de Broglie wavelength of neutron and elec-
tron with kinetic energy 500 eV. (2014)

Introduction: The de Broglie wavelength is a fundamental concept in quantum
mechanics, introduced by Louis de Broglie. It describes the wave-like behavior of
particles and is inversely proportional to their momentum.

Solution: For a particle, the de Broglie wavelength λ is given by:

λ =
h

p

where h is Planck’s constant and p is the momentum of the particle.

(i) A neutron with kinetic energy of 500 eV: The kinetic energy Ek is related
to the momentum p by:

Ek =
p2

2m

Solving for p:
p =

√
2mEk

Substituting Ek = 500 eV and 1 eV = 1.602× 10−19 J:

Ek = 500× 1.602× 10−19 J

p =
√

2× 1.675× 10−27 kg × 500× 1.602× 10−19 J

p =
√

2863.35× 10−46 kg · m/s

p ≈ 5.3× 10−22 kg · m/s

The de Broglie wavelength is:

λ =
6.626× 10−34 Js

5.3× 10−22 kg · m/s

λ ≈ 1.28× 10−12 m

(ii) An electron with kinetic energy of 500 eV: The kinetic energy Ek is related
to the momentum p by:

Ek =
p2

2me

Solving for p:
p =

√
2meEk

Substituting Ek = 500 eV and 1 eV = 1.602× 10−19 J:

Ek = 500× 1.602× 10−19 J

p =
√

2× 9.11× 10−31 kg × 500× 1.602× 10−19 J

p =
√

1.457× 10−46 kg · m/s

p ≈ 1.21× 10−23 kg · m/s

The de Broglie wavelength is:

λ =
6.626× 10−34 Js

1.21× 10−23 kg · m/s
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λ ≈ 5.48× 10−11 m

Conclusion: The de Broglie wavelength of a neutron with kinetic energy of 500 eV is
approximately 1.28×10−12 m, while that of an electron with the same kinetic energy
is approximately 5.48×10−11 m. These results illustrate the wave-particle duality of
matter, with significant differences in wavelengths due to the mass disparity between
neutrons and electrons.
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7 The mean life of Lambda (Λ0) particle is 2.6× 10−10 s.
What will be the uncertainty in the determination of
its mass in eV? (2014)

Introduction: The uncertainty principle, formulated by Werner Heisenberg, states
that two conjugate pair (which do not commute) in quantum mechanics can never
be precisely measured simultaneously. In this case it states that energy and time
cant be exactly determined simultaneously

Solution: Given the mean life of Lambda particle (Λ0) is 2.6× 10−10 s, we use the
energy-time uncertainty principle:

∆E∆t ≥ h̄

2

Rewriting in terms of mass uncertainty:

∆mc2 ·∆t ≥ h̄

2

∆m ≥ h̄

2c2∆t

Given ∆t = 2.6× 10−10 s, h̄ = 1.054× 10−34 Js, and c = 3× 108 m/s:

∆mc2 ≥ 1.054× 10−34

2× 2.6× 10−10

∆mc2 ≥ 1.054× 10−34

5.2× 10−10

∆E ≥ 0.202× 10−24 J

Converting to energy using 1 eV = 1.602× 10−19 J:

∆E ≈ 0.202× 10−24

∆E ≈ 2.025× 10−25 J

∆E ≈ 2.025× 10−25

1.602× 10−19
eV

∆E ≈ 1.26× 10−6 eV

Conclusion: The uncertainty in the mass determination of the Lambda particle
is approximately 1.26 × 10−6 eV. It decays via a week force into a nucleon
and a pion which highlights the precision required in high-energy physics
experiments and the stability of the Lambda particle.
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8 Find the energy, momentum and wavelength of pho-
ton emitted by a hydrogen atom making a direct tran-
sition from an excited state with n = 10 to the ground
state. Also find the recoil speed of the hydrogen atom
in this process. (2016)

Introduction: Whenever an electron makes a transition from higher energy level
to lower energy level it radiates energy in forms of quanta. The transited photon
had a momentum and corresponding wavelenght assosiated with it.

Solution: For an electron transitioning from n = 10 to the ground state (n = 1),
the energy difference is given by:

En = −13.6
1

n2
eV

The energy of the photon emitted:

∆E = E1 − E10

E1 = −13.6 eV, E10 = −13.6
1

102
= −0.136 eV

∆E = −0.136 eV − (−13.6 eV)

∆E = 13.464 eV

The wavelength λ of the emitted photon:

E =
hc

λ

λ =
hc

∆E

Given h = 6.626× 10−34 Js, c = 3× 108 m/s, and ∆E = 13.464× 1.602× 10−19 J:

λ =
6.626× 10−34 × 3× 108

13.464× 1.602× 10−19

λ ≈ 9.13× 10−8 m ≈ 91.3 nm

To find the recoil speed vr of the hydrogen atom:

p =
E

c
=

13.464× 1.602× 10−19

3× 108
≈ 7.19× 10−27 kg · m/s

Using momentum conservation, p =Mvr:

vr =
p

M

Given M ≈ 1.67× 10−27 kg:

vr =
7.19× 10−27

1.67× 10−27

vr ≈ 4.3m/s

Conclusion: The photon emitted in the hydrogen atom transition has a wavelength
of 91.3 nm, and the recoil speed of the hydrogen atom is approximately 4.3m/s.
These results illustrate the principles of energy quantization and con-
servation in atomic transitions, with applications in spectroscopy and
quantum mechanics.
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9 An electron is confined to move between two rigid
walls separated by 10−9 m. Compute the de Broglie
wavelengths representing the first three allowed en-
ergy states of the electron and the corresponding en-
ergies. (2016)

Introduction: The de Broglie wavelength is a fundamental concept in quantum
mechanics which describes the wave nature of particles. According to de Broglie’s
hypothesis, every moving particle or object has an associated wave. The wavelength
is inversely proportional to its momentum. This concept was historically pivotal in
the development of quantum mechanics.

Solution: To solve for the de Broglie wavelengths and the corresponding energies,
we will use the particle in a box model. Here, the electron is confined in a one-
dimensional potential well of width L = 10−9 m.

The energy levels for a particle in a box are given by:

En =
n2h2

8mL2

where: - n is the principal quantum number (1, 2, 3, . . . ), - h is Planck’s constant,
6.626× 10−34 Js, - m is the mass of the electron, 9.109× 10−31 kg, - L is the width
of the box.

Let’s compute the first three energy levels.

For n = 1:
E1 =

12 × (6.626× 10−34)2

8× 9.109× 10−31 × (10−9)2

E1 =
6.6262 × 10−68

8× 9.109× 10−31 × 10−18

E1 =
43.95× 10−68

7.287× 10−48

E1 = 6.03× 10−20 J

For n = 2:
E2 =

4× (6.626× 10−34)2

8× 9.109× 10−31 × (10−9)2

E2 = 4× E1

E2 = 4× 6.03× 10−20

E2 = 2.41× 10−19 J

For n = 3:
E3 =

9× (6.626× 10−34)2

8× 9.109× 10−31 × (10−9)2

E3 = 9× E1

E3 = 9× 6.03× 10−20

E3 = 5.43× 10−19 J
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Now, the de Broglie wavelength is given by:

λn =
h

pn

where pn is the momentum of the electron in the n-th energy state. For a particle
in a box, the momentum is given by:

pn =
√
2mEn

So, for the first three states: For n = 1:

p1 =
√
2× 9.109× 10−31 × 6.03× 10−20

p1 = 3.3× 10−25 kg m/s

λ1 =
6.626× 10−34

3.3× 10−25

λ1 = 2.007× 10−9 m

For n = 2:
p2 =

√
2× 9.109× 10−31 × 2.41× 10−19

p2 =
√
4.38× 10−49

p2 = 6.6× 10−25 kg m/s

λ2 =
6.626× 10−34

6.6× 10−25

λ2 = 10−9 m

For n = 3:
p3 =

√
2× 9.109× 10−31 × 5.43× 10−19

p3 =
√
9.89× 10−49

p3 = 9.94× 10−25 kg m/s

λ3 =
6.626× 10−34

9.94× 10−25

λ3 = 6.66× 10−10 m

13



A/P

Wavefunctions and Energy Levels:
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Figure 2: Wavefunctions for the first three energy states
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Energy Levels

Figure 3: Energy levels for the first three states

Conclusion: These values reflect the quantized nature of energy levels in a con-
fined system, significant in fields like quantum computing and semiconductor
physics.
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10 A typical atomic radius is about 5 × 10−15 m and
the energy of β-particle emitted from a nucleus is
at most of the order of 1 MeV. Prove on the basis
of uncertainty principle that the electrons are not
present in nuclei. (2016)

Introduction: The uncertainty principle, formulated by Werner Heisenberg, states
that two conjugate pair (which do not commute) in quantum mechanics can never
be precisely measured simultaneously. In this case it states that energy and time
cant be exactly determined simultaneously..

Solution:

The Heisenberg Uncertainty Principle is given by:

∆x ·∆p ≥ h̄

2

where ∆x is the uncertainty in position and ∆p is the uncertainty in momentum.
Here, h̄ is the reduced Planck’s constant, h̄ = h

2π ≈ 1.055× 10−34 Js.

For an electron confined within a nucleus of radius R ≈ 5×10−15 m, the uncertainty
in position ∆x is approximately the size of the nucleus:

∆x ≈ 5× 10−15 m

The uncertainty in momentum ∆p can be found using the uncertainty principle:

∆p ≥ h̄

2∆x

Substituting the values:

∆p ≥ 1.055× 10−34

2× 5× 10−15

∆p ≥ 1.055× 10−34

10× 10−15

∆p ≥ 1.055× 10−20 kg m/s

The kinetic energy E of an electron can be related to its momentum p by the non-
relativistic formula:

E =
p2

2m

where m is the mass of the electron, m ≈ 9.109× 10−31 kg. Using ∆p for p:

E ≥ (1.055× 10−20)2

2× 9.109× 10−31

E ≥ 1.113× 10−40

1.822× 10−30
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E ≥ 6.11× 10−11 J

Converting this energy into electron volts (1 eV = 1.602× 10−19 J):

E ≥ 6.11× 10−11

1.602× 10−19
eV

E ≥ 3.81× 108 eV

E ≥ 381 MeV

Conclusion: The minimum energy of an electron confined within a nucleus, ac-
cording to the uncertainty principle, is approximately 381 MeV. This is significantly
higher than the typical energy of β-particles emitted from a nucleus, which is about
1 MeV. Thus, electrons cannot be present in the nucleus as their confinement would
require them to possess unreasonably high energy, inconsistent with observed nuclear
phenomena.
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