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11 A beam 4.0 keV electrons from a source is incident
on a target 50.0 cm away. Find the radius of the
electron beam spot due to Heisenberg’s uncertainty
principle. (2017)

Introduction: The uncertainty principle, formulated by Werner Heisenberg, states
that the position and momentum of a particle cannot be simultaneously determined
with arbitrary precision. For an electron beam, this principle limits how tightly
the beam can be focused, leading to a minimum spot size on the target. And
additionally it could be interpreted as a beam of electrons which is moving along
a specified direction and it encounters a diaphragm with a slit and for that reason
electrons under go diffraction.

Solution:

Given:

• Energy of electrons, E = 4.0 keV = 4.0×103×1.602×10−19 J = 6.408×10−16 J

• Distance to target, L = 50.0 cm = 0.50 m

Verification: Check if non-relativistic approximation is valid

The electron velocity is:

v =
p

m
=

3.42× 10−23

9.109× 10−31
= 3.75× 107 m/s

Since v/c = 3.75 × 107/(3 × 108) = 0.125 < 0.3, the non-relativistic approximation
is reasonable.

For non-relativistic electrons, the kinetic energy E is related to momentum by:

E =
p2

2m

where m = 9.109× 10−31 kg is the electron mass.

Solving for momentum:
p =

√
2mE

Substituting values:

p =
√
2× 9.109× 10−31 × 6.408× 10−16

p =
√

1.167× 10−45 = 3.42× 10−23 kgm/s

The uncertainty principle states:

∆x ·∆p ≥ h̄

2

where h̄ = 1.055× 10−34 Js.

For minimum uncertainty (equality case):

∆x =
h̄

2∆p
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If the initial beam has an uncertainty in transverse position ∆x0, then by the uncer-
tainty principle, it must have a corresponding uncertainty in transverse momentum:

∆p⊥ ≥ h̄

2∆x0

This transverse momentum uncertainty causes the beam to spread as it travels. The
angular divergence is:

θ ≈ ∆p⊥
p

=
h̄

2∆x0 · p

As the beam travels distance L, the radius of the spot becomes:

r = ∆x0 + L · θ = ∆x0 + L · h̄

2∆x0 · p

To minimize the spot size (as we want to ascertain the spot to be definite or you
might think the radius from center to the first minima of the diffraction pattern),
we differentiate with respect to ∆x0 and set equal to zero:

dr

d∆x0
= 1− Lh̄

2(∆x0)2p
= 0

This gives the optimal initial beam width:

∆x0 =

√
Lh̄

2p

The minimum spot radius is:

r = rmin = ∆x0 + L · θ = ∆x0 + L · h̄

2∆x0 · p

rmin =

√
Lh̄

2p
+

Lh̄

2p ·
√

Lh̄
2p

=

√
Lh̄

2p
+

√
Lh̄

2p

= 2

√
Lh̄

2p

=

√
2Lh̄

p

Substituting the values:

rmin =

√
2Lh̄

p

=

√
2 · 0.50 · 1.055× 10−34

3.42× 10−23

=
√
3.08× 10−12

= 1.76× 10−6 m
≈ 1.8µm
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Therefore:
rmin ≈ 1.8× 10−6 m = 1.8µm

Conclusion: The minimum radius of the electron beam spot on the target due
to Heisenberg’s uncertainty principle is approximately 1.8µm. This fundamental
quantum mechanical limit demonstrates why electron microscopes and other high-
precision electron beam instruments face ultimate resolution limits determined by
the uncertainty principle.
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12 Estimate the de Broglie wavelength of the electron
orbiting in the first excited state of the hydrogen
atom. (2017)

Introduction:

The de Broglie wavelength is a fundamental concept in quantum mechanics that
describes the wave-like behavior of particles. Introduced by Louis de Broglie in
1924, it posits that any moving particle has an associated wavelength given by
λ = h

p , where h is Planck’s constant and p is the particle’s momentum. This principle
bridges classical and quantum mechanics, highlighting the wave-particle duality of
matter.

Solution:

We can also determine the de Broglie wavelength of the electron using the energy of
the first excited state of the hydrogen atom. The total energy of an electron in the
n-th orbit is given by:

En = −13.6 eV
n2

For the first excited state (n = 2):

E2 = −13.6 eV
22

= −13.6 eV
4

= −3.4 eV

This energy is the sum of the kinetic and potential energies. In the Bohr model of
the hydrogen atom, the kinetic energy (K.E.) is equal to the negative of the total
energy:

K.E. = −E2 = 3.4 eV

To find the momentum p of the electron, we use the relation between kinetic energy
and momentum:

K.E. = p2

2m

Solving for p:
p =

√
2m · K.E.

Converting the kinetic energy to joules:

3.4 eV = 3.4× 1.602× 10−19 J = 5.447× 10−19 J

Now, substituting the mass of the electron m = 9.109× 10−31 kg:

p =
√

2 · 9.109× 10−31 kg · 5.447× 10−19 J

p =

√
9.919× 10−49 kg2 · m2 · s−2

p ≈ 9.96× 10−25 kg m/s

Finally, we calculate the de Broglie wavelength λ:

λ =
h

p
=

6.626× 10−34 Js
9.96× 10−25 kg m/s

λ ≈ 6.65× 10−10 m

λ ≈ 0.665nm
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Conclusion:

The de Broglie wavelength of the electron in the first excited state of the hydrogen
atom is approximately 0.665 nm. This wavelength reflects the wave-particle dual-
ity of the electron, emphasizing its quantum mechanical nature. Such insights are
crucial for understanding phenomena at atomic scales, including electron diffraction
and the formation of atomic spectra.
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13 Show that the mass and linear momentum of a quan-
tum mechanical particle can be given by m = h

λv and
p = h

λ, respectively, where h, λ and v are Planck’s
constant, wavelength, and velocity of the particle,
respectively. Comment on the wave-particle duality
from these relations. (2019)

Introduction:

The de Broglie hypothesis posits that every moving particle has an associated wave-
length, bridging the gap between classical and quantum physics. This hypothesis,
introduced by Louis de Broglie in 1924, demonstrates the wave-particle duality, a
cornerstone of quantum mechanics.

Solution:

To show the given relations, we start from the de Broglie wavelength formula. The
de Broglie wavelength λ is given by:

λ =
h

p

where h is Planck’s constant and p is the momentum of the particle.

1. Derivation of momentum: Given the de Broglie relation:

λ =
h

p

Solving for p:
p =

h

λ

2. Derivation of mass: We also know that momentum p is related to mass m and
velocity v by:

p = mv

Substituting p = h
λ from the de Broglie relation:

mv =
h

λ

Solving for m:
m =

h

λv

These derivations show that the mass and momentum of a quantum mechanical
particle can be expressed in terms of Planck’s constant, the particle’s wavelength,
and its velocity.

Comment on Wave-Particle Duality:

The derived relations m = h
λv and p = h

λ underscore the wave-particle duality
of matter. They reveal that the properties traditionally associated with particles
(mass and momentum) can be described using wave characteristics (wavelength).
This duality is fundamental in quantum mechanics, explaining phenomena such as
electron diffraction and the quantization of atomic orbits.

Conclusion:
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The expressions for mass and momentum derived from the de Broglie wavelength
highlight the intrinsic connection between wave and particle properties in quantum
mechanics. This wave-particle duality is crucial for understanding various quantum
phenomena and has practical applications in fields like electron microscopy and
semiconductor technology.
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14 State and express mathematically the three uncer-
tainty principles of Heisenberg. Highlight the phys-
ical significance of these principles in the develop-
ment of Quantum Mechanics. (2019)

Introduction:

The Heisenberg uncertainty principle is a fundamental concept in quantum mechan-
ics, formulated by Werner Heisenberg in 1927. It states that certain pairs of physical
properties, known as conjugate pairs, cannot both be known to arbitrary
precision simultaneously. This principle is mathematically expressed using the
commutator of these conjugate pairs, which is non-zero.

Solution:

Heisenberg’s uncertainty principle can be expressed mathematically for three differ-
ent pairs of conjugate variables:

1. Position and Momentum:

∆x∆p ≥ h̄

2

The commutator for position x̂ and momentum p̂ is [x̂, p̂] = ih̄. Since
this commutator is not zero, it implies that position and momentum cannot be
simultaneously determined with arbitrary precision.

2. Energy and Time:
∆E∆t ≥ h̄

2

The commutator for energy Ê and time t̂ is [Ê, t̂] = ih̄. This non-zero
commutator signifies that energy and time cannot both be precisely measured at
the same time.

3. Angular Position and Angular Momentum:

∆θ∆L ≥ h̄

2

The commutator for angular position θ̂ and angular momentum L̂ is
[θ̂, L̂] = ih̄. Again, the non-zero commutator indicates that angular position and
angular momentum cannot be simultaneously determined with arbitrary precision.

These inequalities show that increasing the precision in measuring one quantity leads
to increased uncertainty in the conjugate quantity.

Physical Significance:

The uncertainty principles have several significant implications:

1. Limits of Measurement: They set fundamental limits on the precision of mea-
surements, illustrating that there is a limit to how precisely we can simultaneously
know certain pairs of properties of a quantum system.

2. Wave-Particle Duality: These principles highlight the wave-particle duality of
matter, emphasizing that particles exhibit both wave-like and particle-like proper-
ties, depending on the measurement context.

3. Quantum Behavior: The principles help explain why atoms do not collapse,
as electrons cannot have both a well-defined position and momentum. This results
in stable atomic structures.
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4. Quantum Fluctuations: In fields such as quantum field theory, the energy-
time uncertainty principle is crucial for understanding quantum fluctuations and the
creation of particle-antiparticle pairs.

Conclusion:

Heisenberg’s uncertainty principles are cornerstones of quantum mechanics, funda-
mentally altering our understanding of measurement and the behavior of particles
at microscopic scales. They underscore the intrinsic limitations of classical concepts
when applied to quantum systems and have wide-ranging applications in technology
and theoretical physics, such as in the development of quantum computers and the
study of fundamental particles.
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15 For a free quantum mechanical particle under the
influence of a one-dimensional potential, show that
the energy is quantized in discrete fashion. How
do these energy values differ from those of a linear
harmonic oscillator? (2019)

Introduction:

Quantum mechanics reveals that particles can only occupy certain discrete energy
levels, a phenomenon known as quantization. This concept was developed in the
early 20th century by scientists like Planck, Bohr, and Schrödinger. Quantization
arises due to boundary conditions and the wave nature of particles.

Solution:

To show the quantization of energy, we consider a particle in a one-dimensional
potential well (infinite potential well) of width L.

The time-independent Schrödinger equation is:

− h̄2

2m

d2ψ(x)

dx2
= Eψ(x)

For a particle in an infinite potential well, the potential V (x) is:

V (x) =

{
0 for 0 < x < L

∞ otherwise

Inside the well, the Schrödinger equation simplifies to:

d2ψ(x)

dx2
+

2mE

h̄2
ψ(x) = 0

Let k2 = 2mE
h̄2 , then:

d2ψ(x)

dx2
+ k2ψ(x) = 0

The general solution to this differential equation is:

ψ(x) = A sin(kx) +B cos(kx)

Applying boundary conditions ψ(0) = 0 and ψ(L) = 0: 1. At x = 0:

ψ(0) = A sin(0) +B cos(0) = B = 0

So, ψ(x) = A sin(kx).

2. At x = L:
ψ(L) = A sin(kL) = 0

Since A ̸= 0, we must have sin(kL) = 0.

Thus, kL = nπ, where n is an integer (n = 1, 2, 3, . . .).

So, k = nπ
L .
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The energy levels are given by:

En =
h̄2k2

2m
=

h̄2

2m

(nπ
L

)2
=
n2π2h̄2

2mL2

Hence, the energy is quantized and the allowed energies are:

En =
n2π2h̄2

2mL2
for n = 1, 2, 3, . . .

Comparison with Linear Harmonic Oscillator:

For a linear harmonic oscillator, the energy levels are given by:

En =

(
n+

1

2

)
h̄ω for n = 0, 1, 2, . . .

The key differences are:

1. The energy levels for the particle in a potential well are proportional to n2, while
for the harmonic oscillator they are proportional to n+ 1

2 .

2. The spacing between energy levels in the potential well increases with n, whereas
for the harmonic oscillator, the spacing between adjacent energy levels is constant
(h̄ω)

3. There is no zero point energy in case of 1D infinite well as is the case with har-
monic oscillator.

4. There is fixed boundary condition in case of infinite well i.e 0 to L but for har-
monic oscillator there is a restoring force but no fixed spatial boundary condition
due to which they have different energy level properties.

Conclusion:

The quantization of energy in a one-dimensional potential well demonstrates how
boundary conditions lead to discrete energy levels. This concept is foundational
in quantum mechanics, affecting phenomena like electron configurations in atoms
and the behavior of particles in confined spaces. The comparison with the linear
harmonic oscillator highlights the diversity in quantum systems, each with unique
energy quantization characteristics.

12



A/P

16 Using the uncertainty principle ∆x∆p ≥ h̄/2, esti-
mate the ground state energy of a harmonic oscilla-
tor. (2020)

Introduction: The uncertainty principle, formulated by Werner Heisenberg in
1927, states that it is impossible to simultaneously determine the exact position
and momentum of a particle. This principle is fundamental to quantum mechanics
and impacts the behavior of quantum systems such as the harmonic oscillator.

Solution:

The ground state energy of a harmonic oscillator can be estimated using the uncer-
tainty principle. For a harmonic oscillator, the potential energy V (x) = 1

2mω
2x2

and the kinetic energy T (p) = p2

2m .

Using the uncertainty principle ∆x∆p ≥ h̄
2 :

∆p ≈ h̄

2∆x

The total energy E is given by the sum of kinetic and potential energies. Assuming
∆x is of the order of the position uncertainty and ∆p is of the order of the momentum
uncertainty:

E ≈ (∆p)2

2m
+

1

2
mω2(∆x)2

Substituting ∆p:

E ≈
(

h̄
2∆x

)2
2m

+
1

2
mω2(∆x)2

E ≈ h̄2

8m(∆x)2
+

1

2
mω2(∆x)2

Minimizing this energy with respect to ∆x, we set the derivative with respect to ∆x
to zero:

dE

d(∆x)
= − h̄2

4m(∆x)3
+mω2(∆x) = 0

− h̄2

4m(∆x)3
+mω2(∆x) = 0

h̄2

4m2(∆x)4
= ω2

(∆x)4 =
h̄2

4m2ω2

(∆x)2 =
h̄

2mω
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∆x =

√
h̄

2mω

Substituting back into the energy expression:

E ≈ h̄2

8m

(
2mω

h̄

)
+

1

2
mω2

(
h̄

2mω

)

E ≈ h̄ω

4
+
h̄ω

4
=
h̄ω

2

Thus, the ground state energy is:

E0 =
h̄ω

2

Conclusion:

The uncertainty principle is crucial in understanding the limitations of measurements
at the quantum level. The calculated ground state energy of a harmonic oscillator
being h̄ω

2 signifies the zero-point energy, indicating that even at absolute zero, the
oscillator retains quantum mechanical motion. This concept is widely applicable in
fields like quantum field theory and low-temperature physics.
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17 A blue lamp emits light of mean wavelength of 4500
Å. The rating of the lamp is 150 W and its 8% of
the energy appears as light. How many photons are
emitted per second by the lamp? (2020)

Introduction: Photon emission from light sources can be quantified using the
energy-wavelength relationship for photons. This relationship is fundamental in
quantum mechanics and is instrumental in understanding light sources.

Solution:

First, convert the wavelength from angstroms to meters:

λ = 4500Å = 4500× 10−10 m = 4.5× 10−7 m

The energy of one photon E is given by:

E =
hc

λ

where h is Planck’s constant (6.626×10−34 Js) and c is the speed of light (3×108 m/s).

E =
6.626× 10−34 × 3× 108

4.5× 10−7
=

19.878× 10−26

4.5× 10−7
= 4.417× 10−19 J

The power output of the lamp as light is 8% of 150W:

P = 0.08× 150 = 12W

The number of photons emitted per second N is given by:

N =
P

E
=

12

4.417× 10−19
= 2.717× 1019

Thus, the number of photons emitted per second by the lamp is:

N ≈ 2.72× 1019 photons/s

Conclusion:

Photon emission quantification allows for precise control and application in various
technologies such as lasers, LEDs, and other optical devices. The calculation of pho-
ton emission rate is crucial in designing efficient lighting systems and understanding
the energy efficiency of light sources.
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18 Consider a Hermitian operator A with property A3 =
1. Show that A = 1. (2020)

Introduction: Hermitian operators play a critical role in quantum mechanics, es-
pecially because their eigenvalues are real. The problem explores the properties of
a specific Hermitian operator.

Solution:

Given that A is a Hermitian operator, all its eigenvalues are real. Let λ be an
eigenvalue of A with an eigenvector |ψ⟩, i.e.,

A|ψ⟩ = λ|ψ⟩

Given A3 = 1,

A3|ψ⟩ = 1|ψ⟩

λ3|ψ⟩ = |ψ⟩

λ3 = 1

The real solutions to λ3 = 1 are λ = 1. Hence, the only eigenvalue of A is 1.

Since A is Hermitian and all its eigenvalues are 1, we can write:

A = I

Therefore,

A = 1

Conclusion:

Hermitian operators are fundamental in ensuring that measurements in quantum
mechanics yield real values. The result demonstrates the specific behavior of a Her-
mitian operator with a given property, reinforcing the concept that such operators
have real eigenvalues, which in this case leads to a unique solution. This concept
has applications in quantum computing and spectral theory.
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19 Find the uncertainty in the momentum of a particle
when its position is determined within 0.02 cm. Find
also the uncertainty in the velocity of an electron and
α-particle respectively when they are located within
15× 10−8cm. (2020)

Introduction:

The Heisenberg uncertainty principle states that it is impossible to simultaneously
determine the exact position and momentum of a particle. This principle is funda-
mental to quantum mechanics and provides limits on how precisely we can measure
these quantities.

Solution:

The uncertainty principle is given by:

∆x∆p ≥ h̄

2

First, let’s find the uncertainty in momentum ∆p when the position ∆x = 0.02 cm =
0.02× 10−2 m.

∆p ≥ h̄

2∆x

Using h̄ = 1.054× 10−34 Js,

∆p ≥ 1.054× 10−34

2× 0.02× 10−2
≈ 2.635× 10−32 kg m/s

Now, let’s find the uncertainty in velocity ∆v for an electron and an α-particle when
the position ∆x = 15× 10−8 cm = 15× 10−10 m.

For an electron with mass me = 9.11× 10−31 kg,

∆p ≥ h̄

2∆x
=

1.054× 10−34

2× 15× 10−10
≈ 3.513× 10−26 kg m/s

∆ve ≥
∆p

me
=

3.513× 10−26

9.11× 10−31
≈ 3.86× 104 m/s

For an α-particle with mass mα = 4× 1.66× 10−27 kg = 6.64× 10−27 kg,

∆vα ≥ ∆p

mα
=

3.513× 10−26

6.64× 10−27
≈ 5.29× 100 m/s

Conclusion: The uncertainty in the momentum of a particle when its position is
determined within 0.02 cm is approximately 2.635 × 10−32 kg m/s. For an electron
and an α-particle located within 15 × 10−8 cm, the uncertainties in their velocities
are approximately 3.86 × 104 m/s and 5.29m/s, respectively. This illustrates the
significant impact of particle mass on the uncertainty in velocity, highlighting the
precision limitations inherent in quantum measurements.
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20 A particle of rest mass m0 has a kinetic energy K,
show that its de Broglie wavelength is given by λ =

hc√
K(K+2m0c2)

. Hence calculate the wavelength of an
electron of kinetic energy 2 MeV. What will be the
value of λ if K ≪ m0c

2? (2020)
Introduction: The de Broglie wavelength relates a particle’s momentum to its
wavelength, an essential concept in quantum mechanics introduced by Louis de
Broglie in 1924. This concept is pivotal in understanding wave-particle duality.

Solution:

The total energy E of a particle is given by:

E = K +m0c
2

The momentum p of the particle is related to its energy and mass by the relation:

E2 = (pc)2 + (m0c
2)2

Substituting E = K +m0c
2,

(K +m0c
2)2 = (pc)2 + (m0c

2)2

K2 + 2Km0c
2 + (m0c

2)2 = (pc)2 + (m0c
2)2

Subtracting (m0c
2)2 from both sides,

K2 + 2Km0c
2 = (pc)2

p =

√
K2 + 2Km0c2

c

The de Broglie wavelength λ is given by:

λ =
h

p
=

h√
K2+2Km0c2

c

=
hc√

K2 + 2Km0c2

Thus, the de Broglie wavelength is:

λ =
hc√

K(K + 2m0c2)

Next, let’s calculate the wavelength of an electron with kinetic energy K = 2MeV.

First, convert the kinetic energy to joules:

K = 2MeV = 2× 106 × 1.602× 10−13 J = 3.204× 10−13 J
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For an electron, m0 = 9.11× 10−31 kg and c = 3× 108 m/s.

Calculate m0c
2:

m0c
2 = 9.11× 10−31 × (3× 108)2 J = 8.2× 10−14 J

Now, calculate λ:

λ =
hc√

K(K + 2m0c2)

Using h = 6.626× 10−34 Js,

λ =
1.988× 10−25

√
3.204× 10−13 × 4.844× 10−13

λ =
1.988× 10−25

√
1.551× 10−25

λ =
1.988× 10−25

1.245× 10−12
≈ 1.597× 10−13 m

For K ≪ m0c
2, K + 2m0c

2 ≈ 2m0c
2,

λ =
hc√

K(2m0c2)
=

hc√
2Km0c2

λ ≈ h√
2m0K

× c

c
=

h√
2m0K

Conclusion: The derived expression for the de Broglie wavelength λ = hc√
K(K+2m0c2)

links a particle’s kinetic energy to its wavelength, emphasizing the relationship be-
tween energy, momentum, and wavelength in quantum mechanics.

For an electron with kinetic energy of 2 MeV, the wavelength is approximately
1.597 × 10−13 m. When K ≪ m0c

2, the wavelength simplifies to λ ≈ h√
2m0K

,
highlighting the classical limit of the de Broglie wavelength.

This relation is significant in analyzing particle behavior at quantum scales, with
applications in electron microscopy and particle physics.
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