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21 What is de Broglie concept of matter wave? Evaluate de
Broglie wavelength of Helium that is accelerated through
300V. (Given mass of proton = mass of neutron = 1.67 ×
10−27 kg)

Introduction: The de Broglie hypothesis, proposed by Louis de Broglie in 1924, suggests
that particles such as electrons have wave-like properties, characterized by a wavelength. This
concept is fundamental to quantum mechanics and leads to the wave-particle duality of matter.

Solution:

The de Broglie wavelength 𝜆 of a particle is given by:

𝜆 = ℎ
𝑝

where ℎ is Planck’s constant and 𝑝 is the momentum of the particle.

For a particle accelerated through a potential difference 𝑉 , the kinetic energy 𝐾 acquired by
the particle is given by:

𝐾 = 𝑒𝑉

where 𝑒 is the elementary charge (1.602 × 10−19 C).

The kinetic energy is also related to the momentum 𝑝 by:

𝐾 = 𝑝2

2𝑚
Thus,

𝑝 =
√

2𝑚𝐾

Substituting 𝐾 = 𝑒𝑉 ,

𝑝 =
√

2𝑚𝑒𝑉

Therefore, the de Broglie wavelength 𝜆 is:

𝜆 = ℎ√
2𝑚𝑒𝑉

Given: ℎ = 6.626 × 10−34 Js 𝑒 = 1.602 × 10−19 C 𝑚He = 4 × (1.67 × 10−27 kg) = 6.68 ×
10−27 kg 𝑉 = 300V
Substitute these values into the equation:
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𝜆 = 6.626 × 10−34
√

2 × 6.68 × 10−27 × 1.602 × 10−19 × 300
Calculate the denominator:

√
2 × 6.68 × 10−27 × 1.602 × 10−19 × 300 =

√
6.434 × 10−23 = 8.02 × 10−12 kg m/s

Now calculate the wavelength:

𝜆 = 6.626 × 10−34

8.02 × 10−12 ≈ 8.26 × 10−23 m

Conclusion: The de Broglie wavelength concept reveals that particles exhibit wave-like behav-
ior, which is fundamental to quantum mechanics. For Helium ions accelerated through a poten-
tial difference of 300V, the calculated de Broglie wavelength is approximately 8.26 × 10−23 m.
This demonstrates the wave-particle duality of matter, crucial in applications such as electron
microscopy and quantum computing.
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22 Obtain an expression for the probability current for the
plane wave 𝜓(𝑥, 𝑡) = exp[𝑖(𝑘𝑥 − 𝜔𝑡)]. Interpret your re-
sult.

Introduction: In quantum mechanics, the probability current is a measure of the flow of prob-
ability associated with the wave function. It is essential for understanding the conservation of
probability and the behavior of quantum particles.

Solution:

The probability current 𝑗(𝑥, 𝑡) for a wave function 𝜓(𝑥, 𝑡) is given by:

𝑗(𝑥, 𝑡) = ℏ
2𝑚𝑖 (𝜓∗ 𝜕𝜓

𝜕𝑥 − 𝜓𝜕𝜓∗

𝜕𝑥 )

For the plane wave 𝜓(𝑥, 𝑡) = 𝑒𝑖(𝑘𝑥−𝜔𝑡),

The complex conjugate is:

𝜓∗(𝑥, 𝑡) = 𝑒−𝑖(𝑘𝑥−𝜔𝑡)

First, calculate 𝜕𝜓
𝜕𝑥 :

𝜕𝜓
𝜕𝑥 = 𝜕

𝜕𝑥𝑒𝑖(𝑘𝑥−𝜔𝑡) = 𝑖𝑘𝑒𝑖(𝑘𝑥−𝜔𝑡) = 𝑖𝑘𝜓

Next, calculate 𝜕𝜓∗

𝜕𝑥 :

𝜕𝜓∗

𝜕𝑥 = 𝜕
𝜕𝑥𝑒−𝑖(𝑘𝑥−𝜔𝑡) = −𝑖𝑘𝑒−𝑖(𝑘𝑥−𝜔𝑡) = −𝑖𝑘𝜓∗

Substitute these into the probability current expression:

𝑗(𝑥, 𝑡) = ℏ
2𝑚𝑖 (𝜓∗𝑖𝑘𝜓 − 𝜓(−𝑖𝑘𝜓∗))

𝑗(𝑥, 𝑡) = ℏ
2𝑚𝑖 (𝑖𝑘𝜓∗𝜓 + 𝑖𝑘𝜓𝜓∗)

𝑗(𝑥, 𝑡) = ℏ
2𝑚𝑖 (2𝑖𝑘|𝜓|2)

Since |𝜓|2 = 𝜓𝜓∗ = 1 for a plane wave,

𝑗(𝑥, 𝑡) = ℏ
2𝑚𝑖 × 2𝑖𝑘 = ℏ𝑘

𝑚
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Conclusion: The probability current for a plane wave 𝜓(𝑥, 𝑡) = exp[𝑖(𝑘𝑥 − 𝜔𝑡)] is 𝑗 = ℏ𝑘
𝑚 .

This indicates a constant flow of probability in the direction of the wave vector 𝑘, reflecting
the uniform motion of the quantum particle. It highlights the conservation of probability and
provides insight into the dynamics of free particles in quantum mechanics.
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23 A system is described by the Hamiltonian operator 𝐻 =
− 𝑑2

𝑑𝑥2 + 𝑥2. Show that the function 𝐴𝑥 exp (−𝑥2
2 ) is an

eigenfunction of 𝐻 . Determine the eigenvalues of 𝐻 .
Introduction: In quantummechanics, the Hamiltonian operator represents the total energy of a
system. Eigenfunctions of the Hamiltonian correspond to stationary states with definite energy,
and the associated eigenvalues represent the energy levels of the system.

Solution:

Given the Hamiltonian:

𝐻 = − 𝑑2

𝑑𝑥2 + 𝑥2

We need to show that the function 𝜓(𝑥) = 𝐴𝑥 exp (−𝑥2
2 ) is an eigenfunction of 𝐻 .

First, calculate 𝑑𝜓
𝑑𝑥 :

𝜓(𝑥) = 𝐴𝑥 exp(−𝑥2

2 )

𝑑𝜓
𝑑𝑥 = 𝐴 (exp(−𝑥2

2 ) + 𝑥 (−𝑥 exp(−𝑥2

2 ))) = 𝐴 exp(−𝑥2

2 ) (1 − 𝑥2)

Next, calculate 𝑑2𝜓
𝑑𝑥2 :

𝑑2𝜓
𝑑𝑥2 = 𝐴 ( 𝑑

𝑑𝑥 [exp(−𝑥2

2 ) (1 − 𝑥2)])

𝑑2𝜓
𝑑𝑥2 = 𝐴 (−𝑥 exp(−𝑥2

2 ) (1 − 𝑥2) + exp(−𝑥2

2 ) (−2𝑥))

𝑑2𝜓
𝑑𝑥2 = 𝐴 exp(−𝑥2

2 ) (−𝑥 + 𝑥3 − 2𝑥) = 𝐴 exp(−𝑥2

2 ) (𝑥3 − 3𝑥)

Now, apply the Hamiltonian operator 𝐻 to 𝜓(𝑥):

𝐻𝜓(𝑥) = −𝑑2𝜓
𝑑𝑥2 + 𝑥2𝜓(𝑥)

Substitute 𝑑2𝜓
𝑑𝑥2 and 𝜓(𝑥):

𝐻𝜓(𝑥) = −𝐴 exp(−𝑥2

2 ) (𝑥3 − 3𝑥) + 𝑥2𝐴𝑥 exp(−𝑥2

2 )
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𝐻𝜓(𝑥) = −𝐴 exp(−𝑥2

2 ) (𝑥3 − 3𝑥) + 𝐴𝑥3 exp(−𝑥2

2 )

𝐻𝜓(𝑥) = 𝐴 exp(−𝑥2

2 ) (−𝑥3 + 3𝑥 + 𝑥3)

𝐻𝜓(𝑥) = 3𝐴𝑥 exp(−𝑥2

2 )

Thus,

𝐻𝜓(𝑥) = 3𝜓(𝑥)

So, 𝜓(𝑥) = 𝐴𝑥 exp (−𝑥2
2 ) is an eigenfunction of 𝐻 with the eigenvalue 𝜆 = 3.

Conclusion: The function 𝜓(𝑥) = 𝐴𝑥 exp (−𝑥2
2 ) is an eigenfunction of the Hamiltonian op-

erator 𝐻 = − 𝑑2
𝑑𝑥2 + 𝑥2 with the eigenvalue 𝜆 = 3. This shows that the system described by 𝐻

has a discrete energy level corresponding to this eigenfunction. Eigenfunctions and eigenval-
ues are crucial in quantum mechanics for determining the stationary states and energy levels of
quantum systems.
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24 Solve the Schrödinger equation for a particle of mass𝑚 in

an infinite rectangularwell defined by𝑉 (𝑥) = {0 ; 0 ≤ 𝑥 ≤ 𝐿
∞ ; 𝑥 < 0, 𝑥 > 𝐿

Obtain the normalized eigenfunctions and the correspond-
ing eigenvalues.

Introduction: The infinite potential well is a fundamental problem in quantum mechanics,
illustrating the quantization of energy levels. The Schrödinger equation provides the basis for
understanding the behavior of a particle in such a well.

Solution:

The time-independent Schrödinger equation is:

− ℏ2

2𝑚
𝑑2𝜓(𝑥)

𝑑𝑥2 + 𝑉 (𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥)

For 0 ≤ 𝑥 ≤ 𝐿, 𝑉 (𝑥) = 0:

− ℏ2

2𝑚
𝑑2𝜓(𝑥)

𝑑𝑥2 = 𝐸𝜓(𝑥)

Rewriting:

𝑑2𝜓(𝑥)
𝑑𝑥2 = −2𝑚𝐸

ℏ2 𝜓(𝑥)

Let 𝑘2 = 2𝑚𝐸
ℏ2 :

𝑑2𝜓(𝑥)
𝑑𝑥2 = −𝑘2𝜓(𝑥)

The general solution is:

𝜓(𝑥) = 𝐴 sin(𝑘𝑥) + 𝐵 cos(𝑘𝑥)

Applying boundary conditions:

1. 𝜓(0) = 0:

𝜓(0) = 𝐴 sin(0) + 𝐵 cos(0) = 𝐵 = 0

So, 𝜓(𝑥) = 𝐴 sin(𝑘𝑥).
2. 𝜓(𝐿) = 0:
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𝜓(𝐿) = 𝐴 sin(𝑘𝐿) = 0

For a non-trivial solution (𝐴 ≠ 0):

sin(𝑘𝐿) = 0

𝑘𝐿 = 𝑛𝜋 where 𝑛 = 1, 2, 3, …

Thus,

𝑘 = 𝑛𝜋
𝐿

The corresponding energy eigenvalues are:

𝐸 = ℏ2𝑘2

2𝑚 = ℏ2

2𝑚 (𝑛𝜋
𝐿 )

2
= 𝑛2𝜋2ℏ2

2𝑚𝐿2

The normalized eigenfunctions are:

𝜓𝑛(𝑥) = 𝐴 sin(𝑛𝜋𝑥
𝐿 )

Normalization condition:

∫
𝐿

0
|𝜓𝑛(𝑥)|2𝑑𝑥 = 1

𝐴2 ∫
𝐿

0
sin2 (𝑛𝜋𝑥

𝐿 ) 𝑑𝑥 = 1

Using ∫𝐿
0 sin2 (𝑛𝜋𝑥

𝐿 ) 𝑑𝑥 = 𝐿
2 :

𝐴2 𝐿
2 = 1

𝐴2 = 2
𝐿

𝐴 = √ 2
𝐿

Thus, the normalized eigenfunctions are:

9



A/P

Solution of Quantum Mechanics PYQs ABHI PHYSICS

𝜓𝑛(𝑥) = √ 2
𝐿 sin(𝑛𝜋𝑥

𝐿 )

Conclusion: The solution to the Schrödinger equation for a particle in an infinite potential well
results in quantized energy levels given by 𝐸𝑛 = 𝑛2𝜋2ℏ2

2𝑚𝐿2 . The normalized eigenfunctions are
𝜓𝑛(𝑥) = √ 2

𝐿 sin (𝑛𝜋𝑥
𝐿 ). This quantization arises due to the boundary conditions imposed by

the infinite potential, demonstrating the wave-like nature of particles in confined systems. Such
quantization is fundamental to understanding atomic and molecular structures.
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25 Normalize the wave function 𝜓(𝑥) = 𝑒−|𝑥| sin(𝑎𝑥).
Introduction: Normalization of a wave function ensures that the total probability of finding
the particle within the entire space is 1. This process involves calculating the normalization
constant such that the integral of the probability density over all space equals 1.

Solution:

The given wave function is:

𝜓(𝑥) = 𝑒−|𝑥| sin(𝑎𝑥)

To normalize 𝜓(𝑥), we must ensure that:

∫
∞

−∞
|𝜓(𝑥)|2 𝑑𝑥 = 1

Calculate |𝜓(𝑥)|2:

|𝜓(𝑥)|2 = (𝑒−|𝑥| sin(𝑎𝑥))2 = 𝑒−2|𝑥| sin2(𝑎𝑥)

Now, integrate |𝜓(𝑥)|2 over all space:

∫
∞

−∞
𝑒−2|𝑥| sin2(𝑎𝑥) 𝑑𝑥

Since 𝑒−2|𝑥| is an even function and sin2(𝑎𝑥) is an even function, the integrand is even. There-
fore, we can write:

∫
∞

−∞
𝑒−2|𝑥| sin2(𝑎𝑥) 𝑑𝑥 = 2 ∫

∞

0
𝑒−2𝑥 sin2(𝑎𝑥) 𝑑𝑥

Using the identity sin2(𝑎𝑥) = 1−cos(2𝑎𝑥)
2 , the integral becomes:

2 ∫
∞

0
𝑒−2𝑥 1 − cos(2𝑎𝑥)

2 𝑑𝑥 = ∫
∞

0
𝑒−2𝑥 𝑑𝑥 − ∫

∞

0
𝑒−2𝑥 cos(2𝑎𝑥) 𝑑𝑥

First, solve ∫∞
0 𝑒−2𝑥 𝑑𝑥:

∫
∞

0
𝑒−2𝑥 𝑑𝑥 = [𝑒−2𝑥

−2 ]
∞

0
= 1

2

Next, solve ∫∞
0 𝑒−2𝑥 cos(2𝑎𝑥) 𝑑𝑥 using the integral formula for exponential and trigonometric

functions:
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∫
∞

0
𝑒−𝑏𝑥 cos(𝑐𝑥) 𝑑𝑥 = 𝑏

𝑏2 + 𝑐2

Here, 𝑏 = 2 and 𝑐 = 2𝑎:

∫
∞

0
𝑒−2𝑥 cos(2𝑎𝑥) 𝑑𝑥 = 2

4 + 4𝑎2 = 2
4(1 + 𝑎2) = 1

2(1 + 𝑎2)

Substitute these results back into the integral:

∫
∞

−∞
𝑒−2|𝑥| sin2(𝑎𝑥) 𝑑𝑥 = 2 (1

2 − 1
2(1 + 𝑎2)) = 1 − 1

1 + 𝑎2 = 𝑎2

1 + 𝑎2

To normalize 𝜓(𝑥), multiply by the normalization constant 𝑁 such that:

∫
∞

−∞
|𝑁𝜓(𝑥)|2 𝑑𝑥 = 1

Thus,

|𝑁|2 ∫
∞

−∞
𝑒−2|𝑥| sin2(𝑎𝑥) 𝑑𝑥 = 1

|𝑁|2 𝑎2

1 + 𝑎2 = 1

|𝑁|2 = 1 + 𝑎2

𝑎2

𝑁 = √1 + 𝑎2

𝑎2 =
√

1 + 𝑎2

𝑎
Therefore, the normalized wave function is:

𝜓(𝑥) =
√

1 + 𝑎2

𝑎 𝑒−|𝑥| sin(𝑎𝑥)

Conclusion: The normalizedwave function𝜓(𝑥) = 𝑒−|𝑥| sin(𝑎𝑥) is𝜓(𝑥) =
√

1+𝑎2
𝑎 𝑒−|𝑥| sin(𝑎𝑥).

Normalization ensures that the total probability of finding the particle within the entire space is
1, which is a fundamental requirement in quantum mechanics.
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26 Consider the one-dimensional wavefunction𝜓(𝑥) = 𝐴𝑥𝑒−𝑘𝑥, (0 ≤
𝑥 < ∞; 𝑘 > 0)
i. Calculate 𝐴 so that 𝜓(𝑥) is normalized.
ii. Using Schrödinger’s equation find the potential 𝑉 (𝑥)
and energy𝐸 forwhich𝜓(𝑥) is an eigenfunction. (Assume
that as 𝑥 → ∞, 𝑉 (𝑥) → 0).

Introduction: The given wavefunction 𝜓(𝑥) = 𝐴𝑥𝑒−𝑘𝑥 needs to be normalized and used to
find the potential 𝑉 (𝑥) and energy 𝐸 for which 𝜓(𝑥) is an eigenfunction using the Schrödinger
equation.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

𝑥

𝜓(
𝑥)

Plot of the wave function 𝜓(𝑥) = 𝐴𝑥𝑒−𝑘𝑥

𝜓(𝑥)

Figure 1: Plot of the wave function 𝜓(𝑥) = 𝐴𝑥𝑒−𝑘𝑥

Solution:

i. Calculate 𝐴 so that 𝜓(𝑥) is normalized.
To normalize 𝜓(𝑥), we require:

∫
∞

0
|𝜓(𝑥)|2 𝑑𝑥 = 1

First, calculate |𝜓(𝑥)|2:
|𝜓(𝑥)|2 = (𝐴𝑥𝑒−𝑘𝑥)2 = 𝐴2𝑥2𝑒−2𝑘𝑥

Now, integrate and set it equal to 1:

∫
∞

0
𝐴2𝑥2𝑒−2𝑘𝑥 𝑑𝑥 = 1

Using the integral:

∫
∞

0
𝑥𝑛𝑒−𝑎𝑥 𝑑𝑥 = 𝑛!

𝑎𝑛+1 , 𝑎 > 0
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For 𝑛 = 2 and 𝑎 = 2𝑘:

∫
∞

0
𝑥2𝑒−2𝑘𝑥 𝑑𝑥 = 2!

(2𝑘)3 = 2
8𝑘3 = 1

4𝑘3

Therefore:
𝐴2 ⋅ 1

4𝑘3 = 1

Solving for 𝐴:
𝐴2 = 4𝑘3

𝐴 = 2𝑘3/2

ii. Using Schrödinger’s equation find the potential 𝑉 (𝑥) and energy 𝐸 for which 𝜓(𝑥) is
an eigenfunction. (Assume that as 𝑥 → ∞, 𝑉 (𝑥) → 0).
The time-independent Schrödinger equation is:

− ℏ2

2𝑚
𝑑2𝜓
𝑑𝑥2 + 𝑉 (𝑥)𝜓 = 𝐸𝜓

First, compute the first and second derivatives of 𝜓(𝑥):

𝜓(𝑥) = 2𝑘3/2𝑥𝑒−𝑘𝑥

𝑑𝜓
𝑑𝑥 = 2𝑘3/2 (𝑒−𝑘𝑥 − 𝑘𝑥𝑒−𝑘𝑥) = 2𝑘3/2𝑒−𝑘𝑥(1 − 𝑘𝑥)

𝑑2𝜓
𝑑𝑥2 = 2𝑘3/2 (−𝑘𝑒−𝑘𝑥(1 − 𝑘𝑥) − 𝑘𝑒−𝑘𝑥) = 2𝑘3/2𝑒−𝑘𝑥(𝑘2𝑥 − 2𝑘)

Substitute 𝜓 and its second derivative into the Schrödinger equation:

− ℏ2

2𝑚2𝑘3/2𝑒−𝑘𝑥(𝑘2𝑥 − 2𝑘) + 𝑉 (𝑥)2𝑘3/2𝑥𝑒−𝑘𝑥 = 𝐸2𝑘3/2𝑥𝑒−𝑘𝑥

Simplify:

− ℏ2

2𝑚2𝑘3/2𝑒−𝑘𝑥𝑘(𝑘𝑥 − 2) + 𝑉 (𝑥)2𝑘3/2𝑥𝑒−𝑘𝑥 = 𝐸2𝑘3/2𝑥𝑒−𝑘𝑥

−ℏ2𝑘5/2

𝑚 𝑒−𝑘𝑥(𝑥 − 2
𝑘) + 𝑉 (𝑥)2𝑘3/2𝑥𝑒−𝑘𝑥 = 𝐸2𝑘3/2𝑥𝑒−𝑘𝑥

Divide through by 2𝑘3/2𝑒−𝑘𝑥:

−ℏ2𝑘2

2𝑚 (𝑥 − 2
𝑘) + 𝑉 (𝑥)𝑥 = 𝐸𝑥

Since this must hold for all 𝑥:

𝑉 (𝑥)𝑥 = 𝐸𝑥 + ℏ2𝑘2

2𝑚 𝑥 − ℏ2𝑘2

𝑚

14



A/P

Solution of Quantum Mechanics PYQs ABHI PHYSICS

𝑉 (𝑥)𝑥 = 𝑥 (𝐸 + ℏ2𝑘2

2𝑚 ) − ℏ2𝑘2

𝑚

Now, solve for 𝑉 (𝑥):
𝑉 (𝑥) = 𝐸 + ℏ2𝑘2

2𝑚 − ℏ2𝑘2

𝑚𝑥
Given that as 𝑥 → ∞, 𝑉 (𝑥) → 0: To satisfy this condition, the constant term in 𝑉 (𝑥) must be
zero:

𝐸 + ℏ2𝑘2

2𝑚 = 0

This gives us:

𝐸 = −ℏ2𝑘2

2𝑚
Therefore, the potential 𝑉 (𝑥) becomes:

𝑉 (𝑥) = −ℏ2𝑘2

𝑚 (1
𝑥)

Conclusion: The normalization constant 𝐴 is found to be 2𝑘3/2. Using the Schrödinger equa-
tion, the potential 𝑉 (𝑥) and energy 𝐸 for which 𝜓(𝑥) is an eigenfunction are determined. The
energy is 𝐸 = −ℏ2𝑘2

2𝑚 and the potential is 𝑉 (𝑥) = −ℏ2𝑘2
𝑚 ( 1

𝑥).
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27 (a) Solve the radial part of the time-independent Schrödinger
equation for a hydrogen atom. Obtain an expression for
the energy eigenvalues.
(b) What is the degree of degeneracy of the energy eigen-
values? What happens if the spin of the electron is taken
into account?

(a) Introduction: The hydrogen atom problem is a classic problem in quantum mechanics. It
involves solving the Schrödinger equation for an electron bound to a proton via the Coulomb po-
tential. The solution provides the allowed energy levels of the electron, explaining the discrete
spectral lines of hydrogen.

Solution:

The time-independent Schrödinger equation is:

− ℏ2

2𝑚∇2𝜓 + 𝑉 (𝑟)𝜓 = 𝐸𝜓

For the hydrogen atom, the potential 𝑉 (𝑟) is the Coulomb potential:

𝑉 (𝑟) = − 𝑒2

4𝜋𝜖0𝑟

We separate the wavefunction 𝜓 into radial and angular parts:

𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌 (𝜃, 𝜙)

The Laplacian in spherical coordinates is given by:

∇2𝜓 = 1
𝑟2

𝜕
𝜕𝑟 (𝑟2 𝜕𝑅(𝑟)

𝜕𝑟 ) 𝑌 (𝜃, 𝜙)

+ 1
𝑟2 sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃𝜕𝑌 (𝜃, 𝜙)

𝜕𝜃 ) + 1
𝑟2 sin2 𝜃

𝜕2𝑌 (𝜃, 𝜙)
𝜕𝜙2

Substituting this into the Schrödinger equation:

− ℏ2

2𝑚 [ 1
𝑟2

𝜕
𝜕𝑟 (𝑟2 𝜕𝑅(𝑟)

𝜕𝑟 ) 𝑌 (𝜃, 𝜙)

+ 1
𝑟2 sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃𝜕𝑌 (𝜃, 𝜙)

𝜕𝜃 ) + 1
𝑟2 sin2 𝜃

𝜕2𝑌 (𝜃, 𝜙)
𝜕𝜙2 ]

− 𝑒2

4𝜋𝜖0𝑟𝑅(𝑟)𝑌 (𝜃, 𝜙) = 𝐸𝑅(𝑟)𝑌 (𝜃, 𝜙)
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Divide through by 𝑅(𝑟)𝑌 (𝜃, 𝜙):

− ℏ2

2𝑚 [ 1
𝑅(𝑟)

1
𝑟2

𝜕
𝜕𝑟 (𝑟2 𝜕𝑅(𝑟)

𝜕𝑟 ) + 1
𝑌 (𝜃, 𝜙)

1
𝑟2 sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃𝜕𝑌 (𝜃, 𝜙)

𝜕𝜃 )

+ 1
𝑌 (𝜃, 𝜙)

1
𝑟2 sin2 𝜃

𝜕2𝑌 (𝜃, 𝜙)
𝜕𝜙2 ]

− 𝑒2

4𝜋𝜖0𝑟 = 𝐸

Multiply through by 2𝑚 and 𝑟2 to separate variables:

[− ℏ2

2𝑚
1

𝑅(𝑟)
𝑑
𝑑𝑟 (𝑟2 𝑑𝑅(𝑟)

𝜕𝑟 ) − 𝑒2𝑟2

4𝜋𝜖0ℏ2 ]

= [ 1
𝑌 (𝜃, 𝜙) sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃𝜕𝑌 (𝜃, 𝜙)

𝜕𝜃 ) + 1
𝑌 (𝜃, 𝜙) sin2 𝜃

𝜕2𝑌 (𝜃, 𝜙)
𝜕𝜙2 ] = −2𝑚𝐸𝑟2

ℏ2

Since the left side is a function of 𝑟 only and the right side is a function of 𝜃 and 𝜙 only, both
sides must be equal to a constant, which we denote as 𝑙(𝑙 + 1):
For the radial part:

− ℏ2

2𝑚
1

𝑅(𝑟)
𝑑
𝑑𝑟 (𝑟2 𝑑𝑅(𝑟)

𝜕𝑟 ) − 𝑒2𝑟2

4𝜋𝜖0ℏ2 = 𝑙(𝑙 + 1)

Rewriting and simplifying:

𝑑
𝑑𝑟 (𝑟2 𝑑𝑅(𝑟)

𝜕𝑟 ) + [2𝑚
ℏ2 (𝐸 + 𝑒2

4𝜋𝜖0𝑟) 𝑟2 − 𝑙(𝑙 + 1)] 𝑅(𝑟) = 0

Introducing the substitution:

𝑅(𝑟) = 𝑢(𝑟)
𝑟

We obtain:
𝑑2𝑢(𝑟)

𝑑𝑟2 + [2𝑚
ℏ2 (𝐸 + 𝑒2

4𝜋𝜖0𝑟) − 𝑙(𝑙 + 1)
𝑟2 ] 𝑢(𝑟) = 0

To solve this equation, we introduce dimensionless variables:

𝜌 = 𝑟
𝑎0

, 𝑎0 = 4𝜋𝜖0ℏ2

𝑚𝑒2

and let
𝜖 = 𝐸𝑎0

𝑒2/4𝜋𝜖0
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Substituting these into the radial equation, we get:

𝑑2𝑢(𝜌)
𝑑𝜌2 + [−1

𝜌 + 𝑙(𝑙 + 1)
𝜌2 − 𝜖] 𝑢(𝜌) = 0

This is a standard equation. Thus, the energy eigenvalues are given by:

𝐸𝑛 = − 𝑚𝑒4

2ℏ2(4𝜋𝜖0)2
1
𝑛2

where 𝑛 is the principal quantum number.

Conclusion: The radial part of the Schrödinger equation for the hydrogen atom yields energy
eigenvalues given by 𝐸𝑛 = − 𝑚𝑒4

2ℏ2(4𝜋𝜖0)2
1

𝑛2 . These eigenvalues explain the discrete energy
levels observed in the hydrogen atom spectrum.

(b) Introduction: The energy levels of the hydrogen atom have a certain degree of degeneracy
due to the multiple quantum states that share the same energy.

Solution:

The degree of degeneracy of the energy eigenvalues for a given principal quantum number 𝑛
is:

𝑛−1
∑
𝑙=0

(2𝑙 + 1) = 𝑛2

This sum accounts for all possible values of the angular momentum quantum number 𝑙 and its
corresponding magnetic quantum number 𝑚.

When the spin of the electron is taken into account, each spatial state can have two possible
spin states (spin-up and spin-down). Thus, the degeneracy is doubled:

2𝑛2

Conclusion: The degree of degeneracy of the energy eigenvalues for the hydrogen atom is 𝑛2.
When electron spin is considered, this degeneracy increases to 2𝑛2, reflecting the two possible
spin states for each spatial quantum state.
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28 Obtain the time-dependent Schrödinger equation for a
particle. Hence deduce the time-independent Schrödinger
equation.

Introduction:

The Schrödinger equation is fundamental to quantum mechanics, describing how the quantum
state of a physical system changes over time. This derivation starts from basic principles, using
the classical wave equation analogy and the principle of energy conservation, to derive both the
time-dependent and time-independent Schrödinger equations.

Solution:

1. Derivation of the Time-Dependent Schrödinger Equation

We start with the classical wave equation for a free particle in one dimension. The classical
wave equation is given by:

𝜕2𝜓
𝜕𝑥2 = 1

𝑣2
𝜕2𝜓
𝜕𝑡2

In quantum mechanics, the wavefunction 𝜓 represents the probability amplitude, and we need
to incorporate the energy of the particle into the wave equation. The total energy 𝐸 of a particle
is given by the sum of its kinetic and potential energies:

𝐸 = 𝑇 + 𝑉

For a free particle (where the potential 𝑉 = 0), the kinetic energy 𝑇 is given by:

𝑇 = 𝑝2

2𝑚
where 𝑝 is the momentum of the particle. In quantum mechanics, the momentum operator ̂𝑝 is
given by:

̂𝑝 = −𝑖ℏ 𝜕
𝜕𝑥

Thus, the kinetic energy operator ̂𝑇 becomes:

̂𝑇 = ̂𝑝2

2𝑚 = − ℏ2

2𝑚
𝜕2

𝜕𝑥2

The total energy operator ̂𝐸 acting on the wavefunction 𝜓 gives:

̂𝐸𝜓 = 𝐸𝜓 = 𝑖ℏ𝜕𝜓
𝜕𝑡

Combining these, we get the time-dependent Schrödinger equation for a free particle:
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𝑖ℏ𝜕𝜓
𝜕𝑡 = − ℏ2

2𝑚
𝜕2𝜓
𝜕𝑥2

When a potential 𝑉 (𝑥, 𝑡) is present, the Schrödinger equation generalizes to:

𝑖ℏ𝜕𝜓
𝜕𝑡 = (− ℏ2

2𝑚
𝜕2𝜓
𝜕𝑥2 + 𝑉 (𝑥, 𝑡)𝜓)

This is the time-dependent Schrödinger equation.

2. Derivation of the Time-Independent Schrödinger Equation

To derive the time-independent Schrödinger equation, we assume the potential 𝑉 (𝑥, 𝑡) = 𝑉 (𝑥)
is time-independent, and seek solutions of the form:

𝜓(𝑥, 𝑡) = 𝜙(𝑥)𝑇 (𝑡)

Substituting this into the time-dependent Schrödinger equation, we get:

𝑖ℏ (𝜙(𝑥)𝑑𝑇 (𝑡)
𝑑𝑡 ) = (− ℏ2

2𝑚
𝑑2𝜙(𝑥)

𝑑𝑥2 + 𝑉 (𝑥)𝜙(𝑥)) 𝑇 (𝑡)

Dividing both sides by 𝜙(𝑥)𝑇 (𝑡), we obtain:

𝑖ℏ 1
𝑇 (𝑡)

𝑑𝑇 (𝑡)
𝑑𝑡 = − ℏ2

2𝑚
1

𝜙(𝑥)
𝑑2𝜙(𝑥)

𝑑𝑥2 + 𝑉 (𝑥)

Since the left-hand side is a function of time only and the right-hand side is a function of space
only, both sides must be equal to a constant, which we denote by 𝐸. This gives us two separate
equations:

For the time part:

𝑖ℏ𝑑𝑇 (𝑡)
𝑑𝑡 = 𝐸𝑇 (𝑡)

Solving this differential equation, we get:

𝑇 (𝑡) = 𝑒−𝑖𝐸𝑡/ℏ

For the spatial part, we get the time-independent Schrödinger equation:

− ℏ2

2𝑚
𝑑2𝜙(𝑥)

𝑑𝑥2 + 𝑉 (𝑥)𝜙(𝑥) = 𝐸𝜙(𝑥)

Conclusion:

We have derived the time-dependent Schrödinger equation, which describes the evolution of a
quantum state over time. By assuming a separable solution and a time-independent potential,
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we derived the time-independent Schrödinger equation, which is used to find the stationary
states of a quantum system. These equations are fundamental to quantum mechanics and are
essential for understanding the behavior of quantum systems.
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29 Solve the Schrödinger equation for a particle of mass 𝑚
confined in a one-dimensional potential well of the form

𝑉 (𝑥) = {0 ; 0 ≤ 𝑥 ≤ 𝐿
∞ ; 𝑥 < 0, 𝑥 > 𝐿

Obtain the discrete energy values and the normalized eigen-
functions.

Introduction: The problem of a particle in a one-dimensional potential well (also known as an
infinite potential well or ”particle in a box”) is a fundamental quantum mechanics problem. It
provides insight into the quantization of energy levels and the behavior of particles in confined
spaces.

Solution:

Solving to find the Schrödinger Equation in the Potential Well:

The time-independent Schrödinger equation is:

− ℏ2

2𝑚
𝑑2𝜓(𝑥)

𝑑𝑥2 + 𝑉 (𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥)

For the potential well defined by:

𝑉 (𝑥) = {0 ; 0 ≤ 𝑥 ≤ 𝐿
∞ ; 𝑥 < 0, 𝑥 > 𝐿

Within the well (0 ≤ 𝑥 ≤ 𝐿), the potential 𝑉 (𝑥) = 0, so the Schrödinger equation simplifies
to:

− ℏ2

2𝑚
𝑑2𝜓(𝑥)

𝑑𝑥2 = 𝐸𝜓(𝑥)

Rearranging, we get:
𝑑2𝜓(𝑥)

𝑑𝑥2 + 2𝑚𝐸
ℏ2 𝜓(𝑥) = 0

Let:

𝑘 = √2𝑚𝐸
ℏ2

The equation becomes:
𝑑2𝜓(𝑥)

𝑑𝑥2 + 𝑘2𝜓(𝑥) = 0

The general solution to this differential equation is:

𝜓(𝑥) = 𝐴 sin(𝑘𝑥) + 𝐵 cos(𝑘𝑥)
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Checking for Boundary Conditions:

The boundary conditions are:

𝜓(0) = 0 and 𝜓(𝐿) = 0

Applying the boundary condition at 𝑥 = 0:

𝜓(0) = 𝐴 sin(0) + 𝐵 cos(0) = 𝐵 = 0

Thus, the wave-function simplifies to:

𝜓(𝑥) = 𝐴 sin(𝑘𝑥)

Applying the boundary condition at 𝑥 = 𝐿:

𝜓(𝐿) = 𝐴 sin(𝑘𝐿) = 0

For this equation to hold, sin(𝑘𝐿) must be zero, which implies:

𝑘𝐿 = 𝑛𝜋 where 𝑛 = 1, 2, 3, …

Thus:
𝑘 = 𝑛𝜋

𝐿
Finding the Discrete Energy Values:

Substituting 𝑘 back into the expression for energy 𝐸:

𝐸 = ℏ2𝑘2

2𝑚 = ℏ2

2𝑚 (𝑛𝜋
𝐿 )

2
= 𝑛2𝜋2ℏ2

2𝑚𝐿2

So, the discrete energy levels are:

𝐸𝑛 = 𝑛2𝜋2ℏ2

2𝑚𝐿2 where 𝑛 = 1, 2, 3, …

Constructing Normalized Eigen-functions:

The wavefunction is given by:
𝜓𝑛(𝑥) = 𝐴 sin(𝑛𝜋𝑥

𝐿 )

To normalize 𝜓𝑛(𝑥), we require:

∫
𝐿

0
|𝜓𝑛(𝑥)|2 𝑑𝑥 = 1

Substituting 𝜓𝑛(𝑥):
𝐴2 ∫

𝐿

0
sin2 (𝑛𝜋𝑥

𝐿 ) 𝑑𝑥 = 1
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Using the integral:

∫
𝐿

0
sin2 (𝑛𝜋𝑥

𝐿 ) 𝑑𝑥 = 𝐿
2

We get:

𝐴2 ⋅ 𝐿
2 = 1 ⇒ 𝐴2 = 2

𝐿 ⇒ 𝐴 = √ 2
𝐿

Thus, the normalized eigen-functions are:

𝜓𝑛(𝑥) = √ 2
𝐿 sin(𝑛𝜋𝑥

𝐿 )

Conclusion: For a particle in a one-dimensional infinite potential well, the energy levels are
quantized and given by 𝐸𝑛 = 𝑛2𝜋2ℏ2

2𝑚𝐿2 . The corresponding normalized eigen-functions are
𝜓𝑛(𝑥) = √ 2

𝐿 sin (𝑛𝜋𝑥
𝐿 ), showing the wave nature of particles in a confined space.

30 An electron is moving in a one-dimensional box of infi-
nite height and width 1 Å. Find the minimum energy of
electron.

Introduction: In quantummechanics, a particle confined in a one-dimensional box (infinite po-
tential well) exhibits quantized energy levels. The minimum energy corresponds to the ground
state.

Solution:

For an electron in a one-dimensional box of width 𝐿 = 1 Å = 1 × 10−10 m, the energy levels
are given by:

𝐸𝑛 = 𝑛2𝜋2ℏ2

2𝑚𝐿2

The minimum energy corresponds to the ground state (𝑛 = 1):

𝐸1 = 𝜋2ℏ2

2𝑚𝐿2

Substitute the values: - Planck’s constant ℏ = 1.0545718 × 10−34 J ⋅ s - Electron mass 𝑚 =
9.10938356 × 10−31 kg - Width 𝐿 = 1 × 10−10 m

Calculating:

𝐸1 = 𝜋2(1.0545718 × 10−34)2

2(9.10938356 × 10−31)(1 × 10−10)2

𝐸1 ≈ 6.024 × 10−18 J

To convert this energy into electronvolts (eV):

1 eV = 1.60218 × 10−19 J
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𝐸1 ≈ 6.024 × 10−18

1.60218 × 10−19 eV

𝐸1 ≈ 37.6 eV

Conclusion: The minimum energy of an electron confined in a one-dimensional box of width
1 Å is approximately 37.6 eV.
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