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31 Normalized wave function of a particle is given:

𝜓(𝑥) = 𝑁 exp(− 𝑥2

2𝑎2 + 𝑖𝑘𝑥) .

Find the expectation value of position.
Introduction:
The expectation value of position ⟨𝑥⟩ for a given wavefunction 𝜓(𝑥) is defined as:

⟨𝑥⟩ = ∫
∞

−∞
𝑥|𝜓(𝑥)|2 𝑑𝑥,

where |𝜓(𝑥)|2 = 𝜓∗(𝑥)𝜓(𝑥) represents the probability density of the particle.
Solution:

Given:
𝜓(𝑥) = 𝑁 exp(− 𝑥2

2𝑎2 + 𝑖𝑘𝑥) ,

its complex conjugate is:

𝜓∗(𝑥) = 𝑁 ∗ exp(− 𝑥2

2𝑎2 − 𝑖𝑘𝑥) .

Then the probability density becomes:

|𝜓(𝑥)|2 = 𝜓∗(𝑥)𝜓(𝑥) = |𝑁|2 exp(−𝑥2

𝑎2 ) .

Note that ∣exp (− 𝑥2
2𝑎2 )∣

2
= exp (−𝑥2

𝑎2 ) since the argument is real, and |𝑒𝑖𝑘𝑥|2 = 1 since 𝑘 is
real. Therefore:

Now compute the expectation value:

⟨𝑥⟩ = ∫
∞

−∞
𝑥|𝜓(𝑥)|2 𝑑𝑥 = |𝑁|2 ∫

∞

−∞
𝑥 exp(−𝑥2

𝑎2 ) 𝑑𝑥.

Note that 𝑥 exp (−𝑥2
𝑎2 ) is an odd function, and the limits of integration are symmetric about

zero. Therefore,
⟨𝑥⟩ = 0.

Conclusion:
The expectation value of the position for the given wavefunction is zero. This result reflects the
symmetry of the probability distribution, which is centered about the origin, indicating that the
average position of the particle is at 𝑥 = 0.
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32 Write the time-independent Schrödinger equation for a
bouncing ball.

Introduction:
In quantum mechanics, a bouncing ball can be modeled as a particle subject to a gravitational
potential. The potential energy increases linearly with height, similar to the classical potential
energy function in a gravitational field.

Solution:

For a bouncing ball, the potential energy 𝑉 (𝑧) is given by:
𝑉 (𝑧) = 𝑚𝑔𝑧

where: - 𝑚 is the mass of the ball, - 𝑔 is the acceleration due to gravity, - 𝑧 is the height above
the ground.

The time-independent Schrödinger equation is:

− ℏ2

2𝑚
𝑑2𝜓(𝑧)

𝑑𝑧2 + 𝑉 (𝑧)𝜓(𝑧) = 𝐸𝜓(𝑧)

Substituting the potential 𝑉 (𝑧) = 𝑚𝑔𝑧, we get:

− ℏ2

2𝑚
𝑑2𝜓(𝑧)

𝑑𝑧2 + 𝑚𝑔𝑧𝜓(𝑧) = 𝐸𝜓(𝑧)

Rewriting, we have:

− ℏ2

2𝑚
𝑑2𝜓(𝑧)

𝑑𝑧2 + 𝑚𝑔𝑧𝜓(𝑧) = 𝐸𝜓(𝑧)

This is the time-independent Schrödinger equation for a particle in a linear potential, represent-
ing a bouncing ball in a gravitational field.
𝑧

Ground

Ball
𝑚𝑔

Conclusion:
The time-independent Schrödinger equation for a bouncing ball subject to a gravitational po-
tential is given by:

− ℏ2

2𝑚
𝑑2𝜓(𝑧)

𝑑𝑧2 + 𝑚𝑔𝑧𝜓(𝑧) = 𝐸𝜓(𝑧)
This equation models the quantum behavior of a particle under the influence of gravity, provid-
ing insight into the quantized energy levels and wavefunctions of a bouncing ball in a gravita-
tional field.
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33 Solve the Schrödinger equation for a step potential and
calculate the transmission and reflection coefficients for
the casewhen the kinetic energy of the particle𝐸0 is greater
than the potential energy 𝑉 (i.e., 𝐸0 > 𝑉 ).

Introduction:
The step potential is a fundamental problem in quantum mechanics that illustrates the behavior
of a particle encountering a sudden change in potential energy. This problem is essential for
understanding phenomena such as quantum tunneling and reflection.

Consider a particle encountering a step potential:

𝑉 (𝑥) = {0 for 𝑥 < 0
𝑉0 for 𝑥 ≥ 0

Below is a diagram illustrating the step potential:

𝑥

𝑉 (𝑥)

𝑉0

0

𝑉0

Solution:

Consider a particle encountering a step potential:

𝑉 (𝑥) = {0 for 𝑥 < 0
𝑉0 for 𝑥 ≥ 0

The Schrödinger equation in regions where 𝑉 (𝑥) is constant is:

− ℏ2

2𝑚
𝑑2𝜓(𝑥)

𝑑𝑥2 + 𝑉 (𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥)

For 𝑥 < 0 (Region I), where 𝑉 (𝑥) = 0:

− ℏ2

2𝑚
𝑑2𝜓(𝑥)

𝑑𝑥2 = 𝐸0𝜓(𝑥)

The general solution is:
𝜓𝐼(𝑥) = 𝐴𝑒𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥

4



A/P

Solution of Quantum Mechanics PYQs ABHI PHYSICS

where:

𝑘1 = √2𝑚𝐸0
ℏ2

For 𝑥 ≥ 0 (Region II), where 𝑉 (𝑥) = 𝑉0:

− ℏ2

2𝑚
𝑑2𝜓(𝑥)

𝑑𝑥2 + 𝑉0𝜓(𝑥) = 𝐸0𝜓(𝑥)

This simplifies to:
𝑑2𝜓(𝑥)

𝑑𝑥2 = 𝑘2
2𝜓(𝑥)

where:

𝑘2 = √2𝑚(𝐸0 − 𝑉0)
ℏ2

The general solution is:
𝜓𝐼𝐼(𝑥) = 𝐶𝑒𝑖𝑘2𝑥

Since we consider the particle coming from the left and moving to the right, there will be no
wave traveling to the left in Region II (𝐷 = 0):

𝜓𝐼𝐼(𝑥) = 𝐶𝑒𝑖𝑘2𝑥

Boundary Conditions:

At 𝑥 = 0, the wavefunctions and their first derivatives must be continuous:

𝜓𝐼(0) = 𝜓𝐼𝐼(0)
𝑑𝜓𝐼
𝑑𝑥 ∣

𝑥=0
= 𝑑𝜓𝐼𝐼

𝑑𝑥 ∣
𝑥=0

Applying these conditions:

1. Continuity of wavefunction:
𝐴 + 𝐵 = 𝐶

2. Continuity of derivative:
𝑖𝑘1𝐴 − 𝑖𝑘1𝐵 = 𝑖𝑘2𝐶

Solving these equations for 𝐴, 𝐵, and 𝐶:

From the first equation:
𝐶 = 𝐴 + 𝐵

Substituting into the second equation:

𝑖𝑘1𝐴 − 𝑖𝑘1𝐵 = 𝑖𝑘2(𝐴 + 𝐵)

Rearranging:
𝑘1𝐴 − 𝑘1𝐵 = 𝑘2𝐴 + 𝑘2𝐵
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(𝑘1 − 𝑘2)𝐴 = (𝑘1 + 𝑘2)𝐵

𝐴
𝐵 = 𝑘1 + 𝑘2

𝑘1 − 𝑘2

Therefore, the reflection coefficient 𝑅 is:

𝑅 = ∣𝐵𝐴∣
2

= ∣𝑘1 − 𝑘2
𝑘1 + 𝑘2

∣
2

The transmission coefficient 𝑇 is given by:

𝑇 = ∣𝐶𝐴∣
2

= ∣ 2𝑘1
𝑘1 + 𝑘2

∣
2

Conclusion:
For a particle encountering a step potential with 𝐸0 > 𝑉0, the transmission and reflection
coefficients are given by:

𝑅 = ∣𝑘1 − 𝑘2
𝑘1 + 𝑘2

∣
2

, 𝑇 = ∣ 2𝑘1
𝑘1 + 𝑘2

∣
2

These coefficients describe the probability of the particle being reflected or transmitted at the
potential step.

An application of the step potential is seen in the behavior of electrons in semiconductor
devices, where they encounter potential barriers at junctions, leading to phenomena like
tunneling and reflection that are crucial for the operation of diodes and transistors.
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34 Calculate the lowest energy of an electron confined tomove
in a 1-dimensional potential well of width 10 nm.

Introduction:
The problem of an electron confined in a one-dimensional potential well, also known as a ”par-
ticle in a box,” demonstrates the concept of quantized energy levels in quantum mechanics.

Below is a diagram illustrating the one-dimensional potential well:

𝑥

𝑉 (𝑥)

∞ ∞

Potential Well

𝑉 (𝑥) = 0

0 10 nm

Solution:

For an electron in a one-dimensional box of width 𝐿 = 10 nm = 10 × 10−9 m, the energy
levels are given by:

𝐸𝑛 = 𝑛2𝜋2ℏ2

2𝑚𝐿2

The normalized wave function is:

𝜓𝑛(𝑥) = √ 2
𝐿 sin(𝑛𝜋𝑥

𝐿 )

The lowest energy corresponds to the ground state (𝑛 = 1):

𝐸1 = 𝜋2ℏ2

2𝑚𝐿2

Substitute the values: - Planck’s constant ℏ = 1.0545718 × 10−34 J ⋅ s - Electron mass 𝑚 =
9.10938356 × 10−31 kg - Width 𝐿 = 10 × 10−9 m

Calculating:

𝐸1 = 𝜋2(1.0545718 × 10−34)2

2(9.10938356 × 10−31)(10 × 10−9)2

𝐸1 ≈ 6.024 × 10−20 J

To convert this energy into electronvolts (eV):

1 eV = 1.60218 × 10−19 J
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𝐸1 ≈ 6.024 × 10−20

1.60218 × 10−19 eV

𝐸1 ≈ 0.376 eV

Conclusion:
The lowest energy of an electron confined in a one-dimensional potential well of width 10 nm
is approximately 0.376 eV.
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35 Using Schrödinger Equation to Obtain Eigen-functions
and Eigenvalues for a 1-Dimensional Harmonic Oscilla-
tor. Sketch the profiles of eigenfunc ons for first three en-
ergy states.

Introduction:
The quantum harmonic oscillator is a fundamental model in quantum mechanics that describes
a particle subject to a restoring force proportional to its displacement from equilibrium. This is
represented by the potential energy function:

𝑉 (𝑥) = 1
2𝑚𝜔2𝑥2

where 𝑚 is the mass of the particle and 𝜔 is the angular frequency of the oscillator. This po-
tential is quadratic in 𝑥, making it an ideal system to illustrate quantized energy levels and
wavefunctions.

Below is a graph illustrating the potential 𝑉 (𝑥) of a harmonic oscillator:

−2 −1.5 −1 −0.5 0.5 1 1.5 2

0.5

1

1.5

2

𝑥

𝑉 (𝑥)
Potential of the Harmonic Oscillator

Solution:

The force acting on a particle executing linear harmonic oscillation is given by Hooke’s law:

𝐹 = −𝑘𝑥
where 𝑥 represents the displacement from the equilibrium position, and 𝑘 is the force constant.
This linear relationship indicates that the force is always directed towards the equilibrium po-
sition and its magnitude increases linearly with the displacement.

The corresponding potential energy function, 𝑉 (𝑥), associated with this force is quadratic and
is expressed as:

𝑉 (𝑥) = 1
2𝑘𝑥2

In terms of the mass 𝑚 of the particle and the angular frequency 𝜔, where 𝜔 = √ 𝑘
𝑚 , the

potential energy can be rewritten as:

𝑉 (𝑥) = 1
2𝑚𝜔2𝑥2
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The time-independent Schrödinger equation for a particle of mass 𝑚 in this potential is:

− ℏ2

2𝑚
𝑑2𝜓(𝑥)

𝑑𝑥2 + 1
2𝑚𝜔2𝑥2𝜓(𝑥) = 𝐸𝜓(𝑥)

Simplifying, we obtain:

𝑑2𝜓(𝑥)
𝑑𝑥2 + 2𝑚

ℏ2 (𝐸 − 1
2𝑚𝜔2𝑥2) 𝜓(𝑥) = 0

To simplify this equation, we introduce the dimensionless eigenvalue 𝜆 and the dimensionless
variable 𝜉:

𝜆 = 2𝐸
ℏ𝜔

𝜉 = √𝑚𝜔
ℏ 𝑥

Substituting these into the Schrödinger equation transforms it into:

𝑑2𝜓(𝜉)
𝑑𝜉2 + (𝜆 − 𝜉2) 𝜓(𝜉) = 0

This differential equation is known as the Hermite equation. The solutions to this equation are
the Hermite polynomials 𝐻𝑛(𝜉). The eigenfunctions of the harmonic oscillator are thus given
by:

𝜓𝑛(𝜉) = 𝐴𝑛𝐻𝑛(𝜉)𝑒−𝜉2/2

where 𝐴𝑛 is the normalization constant. These polynomials satisfy the orthogonality condition
and are well-suited to describe the quantum states of the harmonic oscillator.

To solve the Hermite equation, we assume a power series solution:

𝜓(𝜉) = 𝑒−𝜉2/2
∞

∑
𝑛=0

𝑎𝑛𝜉𝑛

Substituting this series into the differential equation and matching coefficients for each power
of 𝜉, we derive a recurrence relation for the coefficients 𝑎𝑛:

First, we compute the derivatives:

𝑑𝜓(𝜉)
𝑑𝜉 = 𝑒−𝜉2/2 (

∞
∑
𝑛=0

𝑎𝑛𝑛𝜉𝑛−1 − 𝜉
∞

∑
𝑛=0

𝑎𝑛𝜉𝑛)

= 𝑒−𝜉2/2 (
∞

∑
𝑛=1

𝑎𝑛𝑛𝜉𝑛−1 − 𝜉
∞

∑
𝑛=0

𝑎𝑛𝜉𝑛)

= 𝑒−𝜉2/2 (
∞

∑
𝑛=1

𝑎𝑛𝑛𝜉𝑛−1 −
∞

∑
𝑛=0

𝑎𝑛𝜉𝑛+1)

Then,

𝑑2𝜓(𝜉)
𝑑𝜉2 = 𝑒−𝜉2/2 (

∞
∑
𝑛=1

𝑎𝑛𝑛(𝑛 − 1)𝜉𝑛−2 − 2𝜉
∞

∑
𝑛=1

𝑎𝑛𝑛𝜉𝑛−1 + 𝜉2
∞

∑
𝑛=0

𝑎𝑛𝜉𝑛)
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= 𝑒−𝜉2/2 (
∞

∑
𝑛=2

𝑎𝑛𝑛(𝑛 − 1)𝜉𝑛−2 − 2
∞

∑
𝑛=1

𝑎𝑛𝑛𝜉𝑛 +
∞

∑
𝑛=0

𝑎𝑛𝜉𝑛+2)

Rewriting the Schrödinger equation:

𝑒−𝜉2/2 (
∞

∑
𝑛=2

𝑎𝑛𝑛(𝑛 − 1)𝜉𝑛−2 − 2
∞

∑
𝑛=1

𝑎𝑛𝑛𝜉𝑛 +
∞

∑
𝑛=0

𝑎𝑛𝜉𝑛+2) + (𝜆 − 𝜉2)𝑒−𝜉2/2
∞

∑
𝑛=0

𝑎𝑛𝜉𝑛 = 0

Grouping terms by the power of 𝜉:
∞

∑
𝑛=2

𝑎𝑛𝑛(𝑛 − 1)𝜉𝑛−2 − 2
∞

∑
𝑛=1

𝑎𝑛𝑛𝜉𝑛 +
∞

∑
𝑛=0

𝑎𝑛𝜉𝑛+2 + 𝜆
∞

∑
𝑛=0

𝑎𝑛𝜉𝑛 −
∞

∑
𝑛=0

𝑎𝑛𝜉𝑛+2 = 0

∞
∑
𝑛=0

(𝑎𝑛+2(𝑛 + 2)(𝑛 + 1) − 2𝑎𝑛𝑛 + 𝜆𝑎𝑛) 𝜉𝑛 = 0

For the series to terminate, ensuring normalizable wavefunctions, 𝜆 must be an odd integer:

𝜆 = 2𝑛 + 1

Thus, the quantized energy levels are given by:

𝐸𝑛 = (𝑛 + 1
2) ℏ𝜔

The corresponding normalized eigenfunctions are derived as follows:

The power series solution:

𝜓(𝜉) = 𝑒−𝜉2/2
∞

∑
𝑛=0

𝑎𝑛𝜉𝑛

Substituting into the Schrödinger equation:

𝑑2𝜓(𝜉)
𝑑𝜉2 + (𝜆 − 𝜉2)𝜓(𝜉) = 0

The Hermite polynomials 𝐻𝑛(𝜉) are defined as:

𝐻𝑛(𝜉) = (−1)𝑛𝑒𝜉2 𝑑𝑛

𝑑𝜉𝑛 (𝑒−𝜉2)

The normalized eigenfunctions are:

𝜓𝑛(𝜉) = ( 𝛼√𝜋2𝑛𝑛!)
1/2

𝐻𝑛(𝛼𝜉)𝑒−𝛼2𝜉2/2

where 𝛼 = √𝑚𝜔
ℏ .

Below are the plots of the first three eigenfunctions:
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−3 −2 −1 0 1 2 3
−2

−1

0

1

2

𝑥

𝜓 𝑛
(𝑥

)

First Three Eigenfunctions of the Harmonic Oscillator

𝜓0(𝑥)
𝜓1(𝑥)
𝜓2(𝑥)

Conclusion
(i) The peculiar point is the ground state wave function of simple harmonic oscillator that is
Gaussian in nature. This arises due to the unique boundary conditions of the system. SHO is
the only system for which equality of Heisenberg uncertainty principle holds true (in ground
state).
(ii) The derived energy eigenvalues 𝐸𝑛 = (𝑛 + 1

2) ℏ𝜔 are quantized, meaning the system can
only occupy specific energy levels. This indicates discrete energy states rather than a contin-
uum.
(iii) Applications: Molecular Vibrations in Chemistry, where it explains the spectra observed
in infrared spectroscopy. In quantum field theory, it serves as the basis for understanding
particle behavior in potential wells and for modeling quantized fields.
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36 Calculate the probability of transmission of an electron
of 1.0 eV energy through a potential barrier of 4.0 eV and
0.1 nm width.

Introduction:. Here Quantum tunneling tunneling is taking place. Quantum tunneling occurs
when particles pass through a barrier that they classically shouldn’t be able to, due to their
energy being lower than the potential of the barrier.

Solution:

The transmission probability 𝑇 for a particle with energy 𝐸 encountering a potential barrier 𝑉
of width 𝑎 is given by:

𝑇 = exp (−2𝜅𝑎)

where:

𝜅 = √2𝑚(𝑉 − 𝐸)
ℏ2

Given:

• Energy 𝐸 = 1.0 eV
• Potential 𝑉 = 4.0 eV
• Width 𝑎 = 0.1 nm = 0.1 × 10−9 m

• Electron mass 𝑚 = 9.10938356 × 10−31 kg

• Planck’s constant ℏ = 1.0545718 × 10−34 J ⋅ s
• 1 eV = 1.60218 × 10−19 J

Calculate 𝜅:

𝜅 = √2 × 9.10938356 × 10−31 × (4.0 − 1.0) × 1.60218 × 10−19

(1.0545718 × 10−34)2

𝜅 ≈ 1.14 × 1010 m−1

Calculate the transmission probability:

𝑇 = exp (−2 × 1.14 × 1010 × 0.1 × 10−9)

𝑇 = exp (−2 × 1.14)

𝑇 ≈ exp(−2.28)

𝑇 ≈ 0.102
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Position

Potential Energy (eV)

𝐸 = 1.0 eV

𝑉 = 4.0 eV

Barrier Width = 0.1 nm

Figure 1: Potential Barrier Diagram

Conclusion: The probability of transmission of an electron with 1.0 eV energy through a po-
tential barrier of 4.0 eV and 0.1 nm width is approximately 0.102, illustrating the quantum
tunneling effect. Quantum tunneling is significant in various applications such as in the op-
eration of tunnel diodes and the process of nuclear fusion in stars. This phenomenon also
underpins the functionality of scanning tunneling microscopes, which can image surfaces at
the atomic level.
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37 Thewave function of a particle is given as𝜓(𝑥) = 1√𝑎𝑒−|𝑥|/𝑎.
Find the probability of locating the particle in the range
−𝑎 ≤ 𝑥 ≤ 𝑎.

Introduction: The wave function𝜓(𝑥) provides the probability amplitude for finding a particle
at position 𝑥. The probability of locating the particle in a specific range is given by the integral
of the square of the wave function over that range.

The general expression for the probability 𝑃 of finding the particle in the range 𝑥1 ≤ 𝑥 ≤ 𝑥2
is given by:

𝑃 = ∫
𝑥2

𝑥1

|𝜓(𝑥)|2 𝑑𝑥

Solution: The probability 𝑃 of finding the particle in the range −𝑎 ≤ 𝑥 ≤ 𝑎 is given by:

𝑃 = ∫
𝑎

−𝑎
|𝜓(𝑥)|2 𝑑𝑥

Given the wave function:
𝜓(𝑥) = 1√𝑎𝑒−|𝑥|/𝑎

The square of the wave function is:

|𝜓(𝑥)|2 = ( 1√𝑎𝑒−|𝑥|/𝑎)
2

= 1
𝑎𝑒−2|𝑥|/𝑎

Thus, the probability is:

𝑃 = ∫
𝑎

−𝑎

1
𝑎𝑒−2|𝑥|/𝑎 𝑑𝑥
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Since the wave function is symmetric about 𝑥 = 0, we can simplify the integral:

𝑃 = 2 ∫
𝑎

0

1
𝑎𝑒−2𝑥/𝑎 𝑑𝑥

Evaluating the integral:

𝑃 = 2 [−1
2𝑒−2𝑥/𝑎]

𝑎

0

𝑃 = 2 [−1
2𝑒−2𝑎/𝑎 + 1

2]

𝑃 = 2 [−1
2𝑒−2 + 1

2]

𝑃 = 1 − 𝑒−2

Conclusion: The probability of locating the particle in the range −𝑎 ≤ 𝑥 ≤ 𝑎 is 1 − 𝑒−2. This
result illustrates how the wave function’s exponential decay affects the probability distribution
within a finite range.
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38 Calculate the zero-point energy of a system consisting of
a mass of 10−3 kg connected to a fixed point by a spring
which is stretched by 10−2 m by a force of 10−1 N. The
system is constrained to move only in one direction.

Introduction:

Zero-point energy is the lowest possible energy that a quantummechanical physical systemmay
have. It is the energy of the ground state of the system. In the case of a harmonic oscillator, the
zero-point energy is 1

2ℏ𝜔, where 𝜔 is the angular frequency of the oscillator.

Solution:

First, we need to determine the spring constant 𝑘 using Hooke’s Law:

𝐹 = 𝑘𝑥
Given:

• Force, 𝐹 = 10−1 N

• Displacement, 𝑥 = 10−2 m

We solve for 𝑘:
𝑘 = 𝐹

𝑥 = 10−1

10−2 = 10N/m

Next, we find the angular frequency 𝜔 of the system:

𝜔 = √ 𝑘
𝑚

Given:

• Mass, 𝑚 = 10−3 kg

• Spring constant, 𝑘 = 10 N/m
We solve for 𝜔:

𝜔 = √ 10
10−3 =

√
104 = 100 rad/s

The zero-point energy 𝐸0 of a quantum harmonic oscillator is given by:

𝐸0 = 1
2ℏ𝜔

Using the reduced Planck constant ℏ ≈ 1.054 × 10−34 Js, we get:

𝐸0 = 1
2 × 1.054 × 10−34 × 100 = 5.27 × 10−33 J

Conclusion:

The zero-point energy of the system is 5.27×10−33 J. This energy represents the lowest energy
state of the harmonic oscillator system, even at absolute zero temperature. This concept is
illustrates the inherent energy present in all quantum systems due to the Heisenberg uncertainty
principle.
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39 The general wave function of harmonic oscillator (one-
dimensional) are of the form

𝑢𝑛(𝑥) =
∞

∑
𝑘=0

𝑎𝑘𝑦𝑘𝑒−𝑦2/2

with 𝑦 = √𝑚𝜔
ℏ 𝑥, and coefficients 𝑎𝑘 are determined by recurrence relations

𝑎𝑘+2 = 2(𝑘 − 𝑛)
(𝑘 + 1)(𝑘 + 2)𝑎𝑘

Corresponding energy levels are
𝐸𝑛 = (𝑛 + 1

2) ℏ𝜔

Discuss the parity of these wave functions. What happens, if the potential for 𝑥 ≤ 0 is infinite
(half harmonic oscillator)?

Introduction:

The general wave function of a one-dimensional harmonic oscillator is given by a series solution
involving Hermite polynomials. The parity of a wave function refers to its behavior under
spatial inversion, 𝑥 → −𝑥.
Solution:

1. Wave Function and Recurrence Relation:

The wave function 𝑢𝑛(𝑥) is expressed as a series involving the Hermite polynomials 𝐻𝑛(𝑦):

𝑢𝑛(𝑥) = 𝐻𝑛 (√𝑚𝜔
ℏ 𝑥) 𝑒− 𝑚𝜔𝑥2

2ℏ

The coefficients 𝑎𝑘 in the series are determined by the recurrence relation:

𝑎𝑘+2 = 2(𝑘 − 𝑛)
(𝑘 + 1)(𝑘 + 2)𝑎𝑘

2. Parity of Wave Functions:

The wave functions 𝑢𝑛(𝑥) for the harmonic oscillator have definite parity:

𝑢𝑛(−𝑥) = (−1)𝑛𝑢𝑛(𝑥)

This means:

• For even 𝑛: 𝑢𝑛(𝑥) is an even function.
• For odd 𝑛: 𝑢𝑛(𝑥) is an odd function.

This behavior is a result of the properties of the Hermite polynomials, which alternate in parity.

3. Half Harmonic Oscillator:
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If the potential is infinite for 𝑥 ≤ 0, the wave function must vanish at 𝑥 = 0:

𝑢𝑛(0) = 0

For the half harmonic oscillator, this condition is satisfied only by the odd-parity solutions:

• Only wave functions with odd 𝑛 are valid.

• These wave functions naturally vanish at 𝑥 = 0, satisfying the boundary condition.
Conclusion:

The wave functions of a harmonic oscillator exhibit definite parity, with even 𝑛 corresponding
to even functions and odd 𝑛 corresponding to odd functions. For a half harmonic oscillator,
where the potential is infinite for 𝑥 ≤ 0, only the odd-parity wave functions are valid, as they
meet the boundary condition 𝑢𝑛(0) = 0. This restriction reduces the number of allowed energy
levels and changes the overall behavior of the system.
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40 Which of the following functions is/are acceptable solu-
tion(s) of the Schrödinger equation?

• 𝜓(𝑥) = 𝐴𝑒−𝑖𝑘𝑥 + 𝐵𝑒𝑖𝑘𝑥

• 𝜓(𝑥) = 𝐴𝑒−𝑘𝑥 + 𝐵𝑒𝑘𝑥

• 𝜓(𝑥) = 𝐴 sin 3𝑘𝑥 + 𝐵 cos 5𝑘𝑥
• 𝜓(𝑥) = 𝐴 sin 3𝑘𝑥 + 𝐵 sin 5𝑘𝑥
• 𝜓(𝑥) = 𝐴 tan 𝑘𝑥

Introduction:

For a wave function to be an acceptable solution to the Schrödinger equation, it must satisfy the
following conditions:

• Normalizability: The wave function must be square-integrable over all space, meaning
that the integral of |𝜓(𝑥)|2 over all space must be finite.

• Continuity: Thewave functionmust be continuous and have continuous first derivatives.

• Boundary Conditions: The wave function must satisfy the boundary conditions of the
physical system.

• Eigenfunction: Thewave functionmust be an eigenfunction of theHamiltonian operator.

Solution:

1. Function (i): 𝜓(𝑥) = 𝐴𝑒−𝑖𝑘𝑥 + 𝐵𝑒𝑖𝑘𝑥

This is a general solution for the free particle Schrödinger equation. It represents a superposition
of plane waves traveling in opposite directions and is a valid solution. These are solutions to
the time-independent Schrödinger equation in a region where the potential 𝑉 (𝑥) = 0:

𝑑2𝜓
𝑑𝑥2 + 𝑘2𝜓 = 0

Hence, 𝜓(𝑥) = 𝐴𝑒−𝑖𝑘𝑥 + 𝐵𝑒𝑖𝑘𝑥 is an acceptable solution.
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𝑥

𝜓(𝑥)

𝜓(𝑥) = 𝐴𝑒−𝑖𝑘𝑥 + 𝐵𝑒𝑖𝑘𝑥

Figure 2: Plot of 𝜓(𝑥) = 𝐴𝑒−𝑖𝑘𝑥 + 𝐵𝑒𝑖𝑘𝑥

2. Function (ii): 𝜓(𝑥) = 𝐴𝑒−𝑘𝑥 + 𝐵𝑒𝑘𝑥

This form is typically a solution to the Schrödinger equation with an imaginary wave number
𝑘 = 𝑖𝜅, which can represent a decaying or growing exponential. For bound states, normalizabil-
ity requires that only the decaying exponent is present. In general, for regions with a potential
step or barrier, 𝜓(𝑥) = 𝐴𝑒−𝑘𝑥 + 𝐵𝑒𝑘𝑥 is valid but must be handled with boundary conditions
to ensure physicality.

−2 −1 1 2

2

4

6

𝑥

𝜓(𝑥)

𝜓(𝑥) = 𝐴𝑒−𝑘𝑥 + 𝐵𝑒𝑘𝑥

Figure 3: Plot of 𝜓(𝑥) = 𝐴𝑒−𝑘𝑥 + 𝐵𝑒𝑘𝑥

3. Function (iii): 𝜓(𝑥) = 𝐴 sin 3𝑘𝑥 + 𝐵 cos 5𝑘𝑥
This function is not a solution to the Schrödinger equation for a single potential because it
mixes different wave numbers. Each term would need to independently satisfy the Schrödinger
equation, but having different wave numbers 3𝑘 and 5𝑘 implies different energies which cannot
coexist in a single eigenstate.
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𝜓(𝑥)

𝜓(𝑥) = 𝐴 sin 3𝑘𝑥 + 𝐵 cos 5𝑘𝑥

Figure 4: Plot of 𝜓(𝑥) = 𝐴 sin 3𝑘𝑥 + 𝐵 cos 5𝑘𝑥

4. Function (iv): 𝜓(𝑥) = 𝐴 sin 3𝑘𝑥 + 𝐵 sin 5𝑘𝑥
Similar to the previous case, this function mixes different wave numbers and therefore different
energies. It cannot be a single eigenstate of the Schrödinger equation due to the presence of
different 𝑘 values, implying different energy eigenvalues.
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𝑥

𝜓(𝑥)

𝜓(𝑥) = 𝐴 sin 3𝑘𝑥 + 𝐵 sin 5𝑘𝑥

Figure 5: Plot of 𝜓(𝑥) = 𝐴 sin 3𝑘𝑥 + 𝐵 sin 5𝑘𝑥

5. Function (v): 𝜓(𝑥) = 𝐴 tan 𝑘𝑥
The tangent function tan 𝑘𝑥 is not acceptable as a wave function because it has singularities
where 𝑘𝑥 = 𝜋

2 , which makes it non-normalizable and unphysical for describing a quantum
state.
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𝜓(𝑥) = 𝐴 tan 𝑘𝑥

Figure 6: Plot of 𝜓(𝑥) = 𝐴 tan 𝑘𝑥

Conclusion:

Among the given functions, the acceptable solutions to the Schrödinger equation are:

• 𝜓(𝑥) = 𝐴𝑒−𝑖𝑘𝑥 + 𝐵𝑒𝑖𝑘𝑥 (i)

• 𝜓(𝑥) = 𝐴𝑒−𝑘𝑥+𝐵𝑒𝑘𝑥 (ii), provided it is appropriately normalized and satisfies boundary
conditions.

Functions (iii), (iv), and (v) are not acceptable solutions due tomixing of different wave numbers
(implying different energies) or non-normalizability.
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