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41 A beam of particles of energy 9 eV is incident on a
potential step 8 eV high from the left. What per-
centage of particles will reflect back?

Introduction:

In quantum mechanics, the reflection and transmission of particles at a potential
step is a fundamental problem. When a particle encounters a potential step, part
of the wave function is reflected, and part is transmitted. The reflection coefficient
(R) gives the probability of the particle being reflected.

Solution:

The energy of the incident particles is E = 9 eV, and the height of the potential step
is V0 = 8 eV. The reflection coefficient (R) is given by:

R =

(
k1 − k2
k1 + k2

)2

where k1 and k2 are the wave numbers of the particle in the regions before and after
the potential step, respectively.

The wave number k is related to the energy E and the potential V by:

k =

√
2m(E − V )

h̄2

For the region before the potential step (E = 9 eV and V = 0 eV):

k1 =

√
2m(9 eV)

h̄2

For the region after the potential step (E = 9 eV and V = 8 eV):

k2 =

√
2m(9 eV − 8 eV)

h̄2
=

√
2m(1 eV)

h̄2

The ratio of the wave numbers is:

k1
k2

=

√
9 eV√
1 eV

= 3

Substituting into the reflection coefficient formula:

R =

(
3− 1

3 + 1

)2

=

(
2

4

)2

=

(
1

2

)2

= 0.25

Therefore, the reflection percentage is:

R× 100% = 0.25× 100% = 25%

The following diagram illustrates the potential step and the wave function behavior:

2



A/P
E = 9 eV

V0 = 8 eV

0

Incident
Reflected

Transmitted

Position

Energy

Conclusion:

The reflection coefficient indicates that 25% of the particles will reflect back when a
beam of particles with energy 9 eV encounters a potential step of 8 eV. This result
highlights the wave nature of particles, where partial reflection and transmission
occur due to quantum mechanical effects.

Applications:

1. Tunneling in Semiconductors: Quantum tunneling is crucial in the operation
of semiconductor devices such as diodes and transistors.
2. Scanning Tunneling Microscopy (STM): STM relies on the quantum tun-
neling of electrons to image surfaces at the atomic level.
3. Nuclear Fusion: Quantum tunneling allows particles to overcome the Coulomb
barrier, facilitating nuclear reactions in stars and experimental fusion reactors.
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42 Estimate the size of hydrogen atom and the ground
state energy from the uncertainty principle.

Introduction: The problem requires an estimation of the characteristic size (Bohr
radius) and ground state energy of a hydrogen atom using the Heisenberg uncertainty
principle. The hydrogen atom consists of an electron bound to a proton via Coulomb
attraction. We aim to estimate:

• The approximate radius r of the hydrogen atom,

• The ground state energy E of the electron.

We assume a non-relativistic quantum mechanical model and apply the uncertainty
relation ∆x∆p ∼ h̄.

Solution:

Let the electron be confined within a region of size r, so the uncertainty in position
is ∆x ∼ r. Then the uncertainty in momentum is:

∆p ∼ h̄

r
order of magnitude is satisfied even when we don’t take 1/2 as a factor

The kinetic energy of the electron can be approximated using:

T ∼ (∆p)2

2m
=

h̄2

2mr2
,

where m is the mass of the electron.

The potential energy due to Coulomb attraction between the proton and the electron
is:

V ∼ − e2

4πε0r
,

where e is the elementary charge and ε0 is the vacuum permittivity.

The total energy of the electron is approximately:

E(r) = T + V ∼ h̄2

2mr2
− e2

4πε0r
.

To find the equilibrium (ground state), we minimize E(r) with respect to r:

dE

dr
= − h̄2

mr3
+

e2

4πε0r2
= 0.

The second derivative greater than 0, confirms a minimum.

Solving for r:
h̄2

mr3
=

e2

4πε0r2
⇒ r =

4πε0h̄
2

me2
.

This is the Bohr radius:

a0 =
4πε0h̄

2

me2
≈ 5.29× 10−11 m.

Substitute r = a0 into the expression for energy:

E =
h̄2

2ma20
− e2

4πε0a0
.
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This gives the ground state energy:

E0 = −13.6 eV.

Conclusion: By applying the uncertainty principle, we estimate the size of the
hydrogen atom to be approximately a0 = 5.29 × 10−11 m, known as the Bohr ra-
dius. The ground state energy is approximately E0 = −13.6 eV, consistent with
experimental results and Bohr’s model.
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43 Write down the Hamiltonian operator for a linear
harmonic oscillator. Show that the energy eigen-
value of the same can be given by En =

(
n+ 1

2

)
h̄ω0 at

energy state n with ω0 being the natural frequency
of vibration of the linear oscillator. Prove that n = 0
energy state has a wave function of typical Gaussian
form.

Introduction: The problem involves analyzing the quantum harmonic oscillator.
We are asked to:

• Write the Hamiltonian operator for a linear harmonic oscillator.

• Derive the energy eigenvalues, demonstrating the quantized form En =
(
n+ 1

2

)
h̄ω0.

• Show that the ground state wavefunction (n = 0) has a Gaussian form.

Assumptions include a one-dimensional oscillator and standard canonical quantiza-
tion with position operator x̂ and momentum operator p̂ satisfying [x̂, p̂] = ih̄.

Solution:

The Hamiltonian for a one-dimensional quantum harmonic oscillator is

Ĥ =
p̂2

2m
+

1

2
mω2

0x̂
2.

This represents the total energy of the system the sum of kinetic and potential
energies in quantum mechanical form.

To simplify the problem and reveal its underlying algebraic structure, we introduce
ladder (creation and annihilation) operators:

â =

√
mω0

2h̄

(
x̂+

i

mω0
p̂

)
,

â† =

√
mω0

2h̄

(
x̂− i

mω0
p̂

)
.

These satisfy the commutation relation:

[â, â†] = 1.

Ladder operators provide an elegant way to analyze the harmonic oscillator because
they allow us to raise or lower the energy levels of the system in discrete steps,
corresponding to the quantized nature of energy in quantum mechanics.

In terms of these operators, the Hamiltonian becomes:

Ĥ = h̄ω0

(
â†â+

1

2

)
.

The number operator is defined as n̂ = â†â, and its eigenstates |n⟩ satisfy:

n̂ |n⟩ = n |n⟩ , n = 0, 1, 2, . . .
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Hence, the energy eigenvalues are:

En = h̄ω0

(
n+

1

2

)
.

This result shows that the energy levels are quantized and equally spaced, with a
minimum energy of 1

2 h̄ω0, known as the zero-point energy. This non-zero minimum
energy reflects the Heisenberg uncertainty principle: even in the ground state, the
particle cannot have both definite position and momentum.

Now consider the ground state |0⟩, which satisfies:

â |0⟩ = 0.

Using the coordinate representation, we have:

x̂ = x,

p̂ = −ih̄ d
dx
.

Thus the annihilation operator becomes:

â =

√
mω0

2h̄

(
x+

h̄

mω0

d

dx

)
.

Apply â to the ground state wavefunction ψ0(x):

âψ0(x) = 0 ⇒
(
x+

h̄

mω0

d

dx

)
ψ0(x) = 0.

Solving this differential equation:
dψ0

dx
= −mω0

h̄
xψ0(x).

This is a separable differential equation. Integrating both sides:∫
1

ψ0
dψ0 = −mω0

h̄

∫
x dx,

lnψ0 = −mω0

2h̄
x2 + C,

ψ0(x) = Ae−
mω0
2h̄

x2
,

where A = eC is the normalization constant.

To normalize, we impose:∫ ∞

−∞
|ψ0(x)|2dx = 1 ⇒ A =

(mω0

πh̄

)1/4
.

Conclusion: The Hamiltonian operator for a linear harmonic oscillator is Ĥ =
p̂2

2m + 1
2mω

2
0x̂

2. Its energy eigenvalues are quantized as En =
(
n+ 1

2

)
h̄ω0, reflecting

the discrete and equally spaced energy levels characteristic of quantum oscillators.
The ground state (n = 0) wavefunction is of Gaussian form:

ψ0(x) =
(mω0

πh̄

)1/4
e−

mω0
2h̄

x2
.

This confirms both the quantized energy spectrum and the Gaussian nature of the
ground state in quantum harmonic oscillators. Moreover, excited states can be
generated by applying the creation operator repeatedly on the ground state.
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44 Prove that Bohr hydrogen atom approaches classical
conditions, when n becomes very large and small
quantum jumps are involved.

Introduction:

The correspondence principle, formulated by Niels Bohr, states that the behavior of
systems described by quantum mechanics replicates classical physics in the limit of
large quantum numbers. For the Bohr model of the hydrogen atom, this principle
can be demonstrated by showing that the energy levels become closely spaced and
the frequency of radiation approaches the classical orbital frequency as n becomes
very large.

Solution:

1. Energy Levels in Bohr Model:

The energy levels of a hydrogen atom in the Bohr model are given by:

En = −13.6 eV
n2

where n is the principal quantum number.

2. Frequency of Radiation:

When an electron transitions from a higher energy level ni to a lower energy level
nf , the frequency of the emitted photon is:

f =
Ei − Ef

h

Substituting the energy levels:

f =
−13.6eV

n2
i

+ 13.6eV
n2
f

h

Let ni = n and nf = n−∆n where ∆n is small compared to n. Then,

f =
13.6 eV
h

(
1

(n−∆n)2
− 1

n2

)
For large n and small ∆n, we can use the binomial approximation:

(n−∆n)2 ≈ n2 − 2n∆n

So,

1

(n−∆n)2
≈ 1

n2

(
1 +

2∆n

n

)
Therefore,

f ≈ 13.6 eV
h

(
1

n2
− 1

n2

(
1 +

2∆n

n

))
=

13.6 eV
h

2∆n

n3
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3. Classical Orbital Frequency:

The classical orbital frequency fclassical of an electron in the nth orbit is given by:

fclassical =
ω

2π
=

v

2πr

Using Bohr’s model, v = e2

2ϵ0h
1
n and r = 4πϵ0h2n2

e2m
, we get:

fclassical =

(
e2

2ϵ0h
1
n

)
2π

(
4πϵ0h2n2

e2m

) =
e4m

16π3ϵ20h
3

1

n3

4. Comparison and Conclusion:

For large n,

f ≈ 13.6 eV
h

2∆n

n3
= fclassical∆n

Thus, the frequency of the radiation approaches the classical orbital frequency when
the quantum number n is very large, confirming Bohr’s correspondence principle.

Conclusion:

As the quantum number n becomes very large, the energy levels of the Bohr hydro-
gen atom become closely spaced, and the frequency of emitted radiation for small
quantum jumps approaches the classical orbital frequency. This demonstrates that
the Bohr model converges to classical physics in the limit of large quantum num-
bers, highlighting the correspondence principle. Practical applications include un-
derstanding atomic spectra and transitions in high-energy physics and astrophysics.

9



A/P

45 Find the probability current density for the wave
function Ψ(x, t) =

[
Aeipx/h̄ +Be−ipx/h̄

]
e−ip

2t/2mh̄. Inter-
pret the result physically.

Introduction:

In quantum mechanics, the probability current density j(x, t) represents the flow of
probability associated with the wave function Ψ(x, t). It is defined as:

j(x, t) =
h̄

2mi

(
Ψ∗∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

)
where Ψ∗ is the complex conjugate of Ψ.

Solution:

Given the wave function:

Ψ(x, t) =
[
Aeipx/h̄ +Be−ipx/h̄

]
e−ip2t/2mh̄

First, find the partial derivatives of Ψ and Ψ∗ with respect to x.

1. Partial Derivative of Ψ with Respect to x:

∂Ψ

∂x
=

∂

∂x

[(
Aeipx/h̄ +Be−ipx/h̄

)
e−ip2t/2mh̄

]
Since e−ip2t/2mh̄ is a constant with respect to x:

∂Ψ

∂x
= e−ip2t/2mh̄

[
∂

∂x

(
Aeipx/h̄ +Be−ipx/h̄

)]

= e−ip2t/2mh̄

[
ip

h̄
Aeipx/h̄ − ip

h̄
Be−ipx/h̄

]

=
ip

h̄
e−ip2t/2mh̄

[
Aeipx/h̄ −Be−ipx/h̄

]
2. Partial Derivative of Ψ∗ with Respect to x:

The complex conjugate of Ψ(x, t) is:

Ψ∗(x, t) =
[
A∗e−ipx/h̄ +B∗eipx/h̄

]
eip

2t/2mh̄

∂Ψ∗

∂x
= eip

2t/2mh̄

[
∂

∂x

(
A∗e−ipx/h̄ +B∗eipx/h̄

)]

= eip
2t/2mh̄

[
− ip
h̄
A∗e−ipx/h̄ +

ip

h̄
B∗eipx/h̄

]

=
ip

h̄
eip

2t/2mh̄
[
−A∗e−ipx/h̄ +B∗eipx/h̄

]
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3. Probability Current Density:

Using the definition of j(x, t):

j(x, t) =
h̄

2mi

(
Ψ∗∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

)
Substitute Ψ, Ψ∗, and their derivatives:

Ψ∗∂Ψ

∂x
=

[
A∗e−ipx/h̄ +B∗eipx/h̄

]
eip

2t/2mh̄ · ip
h̄
e−ip2t/2mh̄

[
Aeipx/h̄ −Be−ipx/h̄

]

=
ip

h̄

[
A∗e−ipx/h̄Aeipx/h̄ −A∗e−ipx/h̄Be−ipx/h̄ +B∗eipx/h̄Aeipx/h̄ −B∗eipx/h̄Be−ipx/h̄

]

=
ip

h̄

[
A∗A−A∗Be−2ipx/h̄ +B∗Ae2ipx/h̄ −B∗B

]
Similarly,

Ψ
∂Ψ∗

∂x
=

[
Aeipx/h̄ +Be−ipx/h̄

]
e−ip2t/2mh̄ · ip

h̄
eip

2t/2mh̄
[
−A∗e−ipx/h̄ +B∗eipx/h̄

]

=
ip

h̄

[
Aeipx/h̄(−A∗e−ipx/h̄) +Aeipx/h̄B∗eipx/h̄ +Be−ipx/h̄(−A∗e−ipx/h̄) +Be−ipx/h̄B∗eipx/h̄

]

=
ip

h̄

[
−AA∗ +AB∗e2ipx/h̄ −BA∗e−2ipx/h̄ +BB∗

]
Therefore, the probability current density is:

j(x, t) =
h̄

2mi

[
ip

h̄

(
A∗A−A∗Be−2ipx/h̄ +B∗Ae2ipx/h̄ −B∗B

)
− ip

h̄

(
−AA∗ +AB∗e2ipx/h̄ −BA∗e−2ipx/h̄ +BB∗

)]

=
h̄

2mi
· 2ip
h̄

(A∗A−B∗B)

j(x, t) =
p

m
(A∗A−B∗B)

Conclusion:

The probability current density for the given wave function is:

j(x, t) =
p

m
(A∗A−B∗B)
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Interpretation:

This result indicates that the probability current density depends on the coefficients
A and B. If |A|2= |B|2, the probability current density j(x, t) is zero, implying
no net flow of probability. If |A|2 ̸= |B|2, there is a net flow of probability in the
direction of the momentum p.

This reflects the physical interpretation that the probability current density repre-
sents the flow of probability for a particle described by the wave function Ψ(x, t).
The terms |A|2 and |B|2 represent the probabilities of the particle moving in posi-
tive and negative directions, respectively. The difference between these probabilities
determines the net flow of probability in the system.
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46 A particle is described by the wave function Ψ(x) =(
π
2

)−1/4
e−ax

2/2. Calculate ∆x and ∆p for the particle,
and verify the uncertainty relation ∆x∆p = h̄

2 .
Introduction: The given wave function is a Gaussian:

Ψ(x) =
(π
2

)−1/4
e−ax2/2,

where a > 0 is a real constant. We are asked to find the uncertainties ∆x and ∆p
and verify the Heisenberg uncertainty relation:

∆x∆p ≥ h̄

2
.

To compute uncertainties, we need:

1. ∆x =
√
⟨x2⟩ − ⟨x⟩2,

2. ∆p =
√
⟨p2⟩ − ⟨p⟩2,

where ⟨x⟩ and ⟨p⟩ are expectation values of position and momentum, respectively.

Solution:

1. Expectation values:

Since Ψ(x) is an even function and complete integrand is odd function:

⟨x⟩ =
∫ ∞

−∞
x|Ψ(x)|2dx = 0.

For momentum, we use p̂ = −ih̄ d
dx :

⟨p⟩ =
∫ ∞

−∞
Ψ∗(x)

(
−ih̄ d

dx

)
Ψ(x)dx.

Since dΨ
dx = −axΨ(x):

⟨p⟩ =
∫ ∞

−∞
Ψ∗(x)(−ih̄)(−ax)Ψ(x)dx = ih̄a

∫ ∞

−∞
x|Ψ(x)|2dx = 0,

because the integrand is odd.

2. Compute ⟨x2⟩:

|Ψ(x)|2=
(π
2

)−1/2
e−ax2

.

Then,
⟨x2⟩ =

∫ ∞

−∞
x2|Ψ(x)|2dx =

(π
2

)−1/2
∫ ∞

−∞
x2e−ax2

dx.

Using the standard integral: ∫ ∞

−∞
x2e−ax2

dx =

√
π

2a3/2
,

we get:

⟨x2⟩ =
(π
2

)−1/2
·

√
π

2a3/2
=

1

2a
.
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Thus,

∆x =
√
⟨x2⟩ =

√
1

2a
=

1√
2a
.

3. Compute ⟨p2⟩:

We calculate ⟨p2⟩ = ⟨−h̄2 d2

dx2 ⟩:

First, compute derivatives:

dΨ

dx
= −axΨ(x),

d2Ψ

dx2
= −aΨ(x)− ax(−ax)Ψ(x) = (−a+ a2x2)Ψ(x).

So:

⟨p2⟩ =
∫ ∞

−∞
Ψ∗(x)

(
−h̄2 d

2

dx2

)
Ψ(x)dx = −h̄2

∫ ∞

−∞
|Ψ(x)|2(−a+ a2x2)dx.

⟨p2⟩ = h̄2
∫ ∞

−∞
|Ψ(x)|2(a− a2x2)dx = h̄2

(
a

∫ ∞

−∞
|Ψ(x)|2dx− a2

∫ ∞

−∞
x2|Ψ(x)|2dx

)
.

Using
∫
|Ψ(x)|2dx = 1 and ⟨x2⟩ = 1

2a :

⟨p2⟩ = h̄2
(
a− a2 · 1

2a

)
= h̄2

(
a− a

2

)
=
ah̄2

2
.

Therefore:

∆p =

√
ah̄2

2
=
h̄
√
a√
2
.

4. Uncertainty product:

∆x∆p =
1√
2a

· h̄
√
a√
2

=
h̄
√
a√

2a ·
√
2
=
h̄
√
a

2
√
a
=
h̄

2
.

Conclusion: The uncertainties in position and momentum are:

∆x =
1√
2a
, ∆p =

h̄
√
a√
2
,

and their product satisfies the Heisenberg uncertainty principle exactly:

∆x∆p =
h̄

2
.

This confirms the wave function is a minimum uncertainty Gaussian state.
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47 A beam of 12eV electron is incident on a potential
barrier of height 25eV and width 0.05 nm. Calculate
the transmission coefficient.

Solution:

Given:

• Electron energy, E = 12 eV

• Barrier height, V0 = 25 eV

• Barrier width, a = 0.05nm = 5× 10−11 m

For a rectangular barrier with E < V0, the transmission coefficient is:

T =

[
1 +

V 2
0 sinh2(κa)

4E(V0 − E)

]−1

where

κ =

√
2m(V0 − E)

h̄

Constants:

m = 9.11× 10−31 kg, h̄ = 1.055× 10−34 Js, 1 eV = 1.602× 10−19 J

Compute:

κ =

√
2 · 9.11× 10−31 · 13 · 1.602× 10−19

1.055× 10−34
=

√
3.785× 10−48

1.055× 10−34
≈ 6.15× 10−24

1.055× 10−34
≈ 5.83×1010 m−1

Now:
κa = 5.83× 1010 · 5× 10−11 = 2.915

sinh(κa) ≈ sinh(2.915) ≈ 9.18

Now plug into the full expression:

T =

[
1 +

(25)2 · (9.18)2

4 · 12 · 13

]−1

=

[
1 +

625 · 84.29
624

]−1

=

[
1 +

52681.25

624

]−1

≈ [1 + 84.42]−1

T ≈ 1

85.42
≈ 0.0117

Answer: The transmission coefficient is approximately 0.012 , meaning there is
about a 1.2% probability of the electron tunneling through the barrier.
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48 Solve the Schrödinger equation for a step potential
and calculate the transmission and reflection coef-
ficients for the case when the kinetic energy of the
particle E0 is greater than the potential energy V
(i.e., E0 > V ).

Introduction:
The step potential is a fundamental problem in quantum mechanics that illustrates
the behavior of a particle encountering a sudden change in potential energy. This
problem is essential for understanding phenomena such as quantum tunneling and
reflection.

Consider a particle encountering a step potential:

V (x) =

{
0 for x < 0

V0 for x ≥ 0

Below is a diagram illustrating the step potential:

x

V (x)

V0

0

V0

Solution:

Consider a particle encountering a step potential:

V (x) =

{
0 for x < 0

V0 for x ≥ 0

The Schrödinger equation in regions where V (x) is constant is:

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x)

For x < 0 (Region I), where V (x) = 0:

− h̄2

2m

d2ψ(x)

dx2
= E0ψ(x)

The general solution is:
ψI(x) = Aeik1x +Be−ik1x

16
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where:

k1 =

√
2mE0

h̄2

For x ≥ 0 (Region II), where V (x) = V0:

− h̄2

2m

d2ψ(x)

dx2
+ V0ψ(x) = E0ψ(x)

This simplifies to:
d2ψ(x)

dx2
= k22ψ(x)

where:

k2 =

√
2m(E0 − V0)

h̄2

The general solution is:
ψII(x) = Ceik2x

Since we consider the particle coming from the left and moving to the right, there
will be no wave traveling to the left in Region II (D = 0):

ψII(x) = Ceik2x

Boundary Conditions:

At x = 0, the wavefunctions and their first derivatives must be continuous:

ψI(0) = ψII(0)

dψI

dx

∣∣∣∣
x=0

=
dψII

dx

∣∣∣∣
x=0

Applying these conditions:

1. Continuity of wavefunction:
A+B = C

2. Continuity of derivative:

ik1A− ik1B = ik2C

Solving these equations for A, B, and C:

From the first equation:
C = A+B

Substituting into the second equation:

ik1A− ik1B = ik2(A+B)

Rearranging:
k1A− k1B = k2A+ k2B

(k1 − k2)A = (k1 + k2)B

17
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A

B
=
k1 + k2
k1 − k2

Therefore, the reflection coefficient R is:

R =

∣∣∣∣BA
∣∣∣∣2 = ∣∣∣∣k1 − k2

k1 + k2

∣∣∣∣2
To correctly compute the transmission coefficient T , we must account for the differ-
ence in group velocities across regions. This gives:

T =
k2
k1

∣∣∣∣CA
∣∣∣∣2 = 4k1k2

(k1 + k2)2

Conclusion:
For a particle encountering a step potential with E0 > V0, the reflection and trans-
mission coefficients are:

R =

∣∣∣∣k1 − k2
k1 + k2

∣∣∣∣2 , T =
4k1k2

(k1 + k2)2

These coefficients describe the probability of the particle being reflected or trans-
mitted at the potential step and obey the conservation law R+ T = 1.
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49 Write the wave functions for a particle on both sides
of a step potential, for E > V0:

V (x) =

{
V0, x > 0

0, x < 0

Interpret the results physically.
Introduction: This problem involves a quantum particle encountering a 1D step
potential. The potential energy function is piecewise constant, and the total energy
of the particle satisfies E > V0. Our goal is to determine the wavefunctions in
both regions and interpret the behavior of the particle, including any reflection or
transmission effects due to the step.

Solution:

The time-independent Schrödinger equation is given by:

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x).

We solve this separately in regions I (x < 0) and II (x > 0).

Region I: x < 0 (where V (x) = 0)

The Schrödinger equation becomes:

− h̄2

2m

d2ψ

dx2
= Eψ,

which simplifies to:

d2ψ

dx2
+ k21ψ = 0, where k1 =

√
2mE

h̄
.

General solution:
ψI(x) = Aeik1x +Be−ik1x.

Here, Aeik1x represents the incident wave, and Be−ik1x is the reflected wave.

Region II: x > 0 (where V (x) = V0)

The Schrödinger equation becomes:

− h̄2

2m

d2ψ

dx2
+ V0ψ = Eψ ⇒ d2ψ

dx2
+ k22ψ = 0,

where

k2 =

√
2m(E − V0)

h̄
.

General solution:
ψII(x) = Ceik2x.

We exclude the term De−ik2x because it would represent a wave incoming from
x→ ∞, which contradicts the physical setup of a wave incident from the left.

Boundary Conditions:
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Continuity of the wavefunction and its derivative at x = 0:

ψI(0) = ψII(0) ⇒ A+B = C,

ψ′
I(0) = ψ′

II(0) ⇒ ik1(A−B) = ik2C.

Solving this system:

A+B = C

k1(A−B) = k2(A+B)

Solving for B/A and C/A:

B

A
=
k1 − k2
k1 + k2

,

C

A
=

2k1
k1 + k2

.

Interpretation:

Even though the energy E > V0, the particle has a finite probability of being re-
flected. The reflection coefficient R and transmission coefficient T are given by:

R =

∣∣∣∣BA
∣∣∣∣2 = (

k1 − k2
k1 + k2

)2

,

T =
k2
k1

∣∣∣∣CA
∣∣∣∣2 = 4k1k2

(k1 + k2)2
.

Note that R+ T = 1, as required by probability conservation.

Physically, even when the particle has enough energy to surpass the potential step,
there is a non-zero probability of reflection due to the abrupt change in potential, a
purely quantum mechanical phenomenon with no classical analog.

Conclusion: The wavefunctions in each region are:

ψI(x) = Aeik1x +Be−ik1x, x < 0,

ψII(x) = Ceik2x, x > 0.

Despite having energy E > V0, the particle experiences partial reflection and trans-
mission due to the discontinuity in potential. This highlights the wave nature of
particles in quantum mechanics and the non-classical behavior at potential bound-
aries.
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50 Normalize the 1s state of the hydrogen atom in the
ground state and calculate the expectation value of
position

Introduction:

The hydrogen atom’s ground state (1s) wave function in spherical coordinates is
given by:

ψ100(r, θ, ϕ) =
1√
πa30

e−r/a0

where a0 = 4πε0h̄
2

me2
is the Bohr radius. This function includes both the radial and an-

gular dependence. For the 1s state, the angular dependence is constant: Y00 = 1√
4π

,
and hence we focus primarily on the radial part for normalization and expectation
value computations.

Our goal is to: 1. Normalize the wave function, and 2. Compute the expectation
value of the radial distance ⟨r⟩.

1. Normalization of the wave function:

The normalization condition in three dimensions is:∫
|ψ100(r, θ, ϕ)|2 d3r = 1

In spherical coordinates, this becomes:∫ 2π

0

∫ π

0

∫ ∞

0
|ψ100(r)|2 r2 sin θ dr dθ dϕ = 1

Substituting ψ100(r) = Ae−r/a0 , we write:∫ 2π

0
dϕ

∫ π

0
sin θ dθ

∫ ∞

0
|A|2e−2r/a0r2 dr = 1

Evaluating the angular integrals:∫ 2π

0
dϕ = 2π,

∫ π

0
sin θ dθ = 2

So the normalization condition becomes:

4π|A|2
∫ ∞

0
e−2r/a0r2 dr = 1

Using the standard integral:∫ ∞

0
r2e−2r/a0 dr =

(a0
2

)3
·
∫ ∞

0
x2e−xdx =

a30
8

· 2 =
a30
4

Hence:
4π|A|2·a

3
0

4
= 1 ⇒ |A|2πa30 = 1 ⇒ |A|= 1√

πa30

So the normalized wave function is:

ψ100(r) =
1√
πa30

e−r/a0
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2. Expectation value of position ⟨r⟩:

The expectation value of the position is given by:

⟨r⟩ =
∫ 2π

0

∫ π

0

∫ ∞

0
ψ∗
100(r) r ψ100(r) r

2 sin θ dr dθ dϕ

Substitute the normalized wave function:

⟨r⟩ = 1

πa30

∫ 2π

0
dϕ

∫ π

0
sin θ dθ

∫ ∞

0
r3e−2r/a0 dr

Evaluate the angular integrals:∫ 2π

0
dϕ = 2π,

∫ π

0
sin θ dθ = 2

So:
⟨r⟩ = 2

a30

∫ ∞

0
r3e−2r/a0 dr

Using the standard integral:∫ ∞

0
r3e−2r/a0 dr =

6

(2/a0)4
=

3a40
4

Then:
⟨r⟩ = 2

a30
· 3a

4
0

4
=

3a0
2

Conclusion:

- The normalized wave function for the hydrogen atom in the 1s state is:

ψ100(r) =
1√
πa30

e−r/a0

- The expectation value of the radial distance in this state is:

⟨r⟩ = 3a0
2

This result shows that the average distance of the electron from the nucleus in the
ground state is 1.5 times the Bohr radius. This reflects the quantum mechanical
nature of the atom, where the electron does not orbit at a fixed radius but has a
spread-out probability distribution.
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