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51 Show that the Pauli spin matrices satisfy the following:

1. 𝜎2
𝑥 = 𝜎2

𝑦 = 𝜎2
𝑧 = 1

2. 𝜎𝑥𝜎𝑦 = −𝜎𝑦𝜎𝑥 = 𝑖𝜎𝑧

3. 𝜎𝑦𝜎𝑧 = −𝜎𝑧𝜎𝑦 = 𝑖𝜎𝑥

4. 𝜎𝑧𝜎𝑥 = −𝜎𝑥𝜎𝑧 = 𝑖𝜎𝑦

Introduction:

The Pauli spin matrices 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 are fundamental operators in quantum mechanics, par-
ticularly in the description of spin-1

2 particles. These matrices not only obey specific algebraic
properties but also play a critical role in the representation of angular momentum in quantum
mechanics. The matrices are defined as follows:

𝜎𝑥 = (0 1
1 0) , 𝜎𝑦 = (0 −𝑖

𝑖 0 ) , 𝜎𝑧 = (1 0
0 −1)

Solution:

We need to verify that the following properties hold for the Pauli matrices:

1. 𝜎2
𝑥 = 𝜎2

𝑦 = 𝜎2
𝑧 = 1

2. 𝜎𝑥𝜎𝑦 = −𝜎𝑦𝜎𝑥 = 𝑖𝜎𝑧

3. 𝜎𝑦𝜎𝑧 = −𝜎𝑧𝜎𝑦 = 𝑖𝜎𝑥

4. 𝜎𝑧𝜎𝑥 = −𝜎𝑥𝜎𝑧 = 𝑖𝜎𝑦

Step 1: Verify that 𝜎2
𝑥 = 𝜎2

𝑦 = 𝜎2
𝑧 = 1.

Calculate 𝜎2
𝑥:

𝜎2
𝑥 = (0 1

1 0) (0 1
1 0) = (1 0

0 1) = 𝐼

Similarly, calculate 𝜎2
𝑦:

𝜎2
𝑦 = (0 −𝑖

𝑖 0 ) (0 −𝑖
𝑖 0 ) = (1 0

0 1) = 𝐼

And calculate 𝜎2
𝑧:

𝜎2
𝑧 = (1 0

0 −1) (1 0
0 −1) = (1 0

0 1) = 𝐼

Thus, 𝜎2
𝑥 = 𝜎2

𝑦 = 𝜎2
𝑧 = 𝐼 .

Step 2: Verify that 𝜎𝑥𝜎𝑦 = −𝜎𝑦𝜎𝑥 = 𝑖𝜎𝑧.

Calculate 𝜎𝑥𝜎𝑦:

𝜎𝑥𝜎𝑦 = (0 1
1 0) (0 −𝑖

𝑖 0 ) = (𝑖 0
0 −𝑖) = 𝑖𝜎𝑧
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Now, calculate 𝜎𝑦𝜎𝑥:

𝜎𝑦𝜎𝑥 = (0 −𝑖
𝑖 0 ) (0 1

1 0) = (−𝑖 0
0 𝑖) = −𝑖𝜎𝑧

This confirms that 𝜎𝑥𝜎𝑦 = −𝜎𝑦𝜎𝑥 = 𝑖𝜎𝑧.

Step 3: Verify that 𝜎𝑦𝜎𝑧 = −𝜎𝑧𝜎𝑦 = 𝑖𝜎𝑥.

Calculate 𝜎𝑦𝜎𝑧:

𝜎𝑦𝜎𝑧 = (0 −𝑖
𝑖 0 ) (1 0

0 −1) = (0 𝑖
𝑖 0) = 𝑖𝜎𝑥

Now, calculate 𝜎𝑧𝜎𝑦:

𝜎𝑧𝜎𝑦 = (1 0
0 −1) (0 −𝑖

𝑖 0 ) = ( 0 −𝑖
−𝑖 0 ) = −𝑖𝜎𝑥

This confirms that 𝜎𝑦𝜎𝑧 = −𝜎𝑧𝜎𝑦 = 𝑖𝜎𝑥.

Step 4: Verify that 𝜎𝑧𝜎𝑥 = −𝜎𝑥𝜎𝑧 = 𝑖𝜎𝑦.

Calculate 𝜎𝑧𝜎𝑥:

𝜎𝑧𝜎𝑥 = (1 0
0 −1) (0 1

1 0) = ( 0 1
−1 0) = 𝑖𝜎𝑦

Now, calculate 𝜎𝑥𝜎𝑧:

𝜎𝑥𝜎𝑧 = (0 1
1 0) (1 0

0 −1) = (0 −1
1 0 ) = −𝑖𝜎𝑦

This confirms that 𝜎𝑧𝜎𝑥 = −𝜎𝑥𝜎𝑧 = 𝑖𝜎𝑦.

Conclusion:

These commutation and anti-commutation relations are crucial in understanding the behavior
of spin-1

2 systems and are widely applicable in various quantum systems.
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52 The normalized wave function for the electron in hydro-
gen atom for the ground state is𝜓(𝑟) = (𝜋𝑎3

0)
−1/2 exp (−𝑟

𝑎0
)

where 𝑎0 is the radius of the first Bohr orbit. Show that
the most probable position of the electron is 𝑎0.

Introduction:

In quantum mechanics, the probability density of finding a particle at a particular position 𝑟 is
given by |𝜓(𝑟)|2. For a spherically symmetric system, the probability of finding the electron
in a thin shell of radius 𝑟 and thickness 𝑑𝑟 is proportional to |𝜓(𝑟)|2𝑟2𝑑𝑟. The most probable
position corresponds to the maximum of this probability distribution.

Solution:

The given wave function for the ground state of the hydrogen atom is:

𝜓(𝑟) = (𝜋𝑎3
0)−1/2 exp(−𝑟

𝑎0
)

The probability density in spherical coordinates is given by:

𝑃(𝑟) = |𝜓(𝑟)|2𝑟2

First, calculate |𝜓(𝑟)|2:
|𝜓(𝑟)|2 = (𝜋𝑎3

0)−1 exp(−2𝑟
𝑎0

)

The probability density becomes:

𝑃(𝑟) = (𝜋𝑎3
0)−1 exp(−2𝑟

𝑎0
) 𝑟2

To find the most probable position, we need to maximize 𝑃(𝑟). This can be done by taking the
derivative of 𝑃(𝑟) with respect to 𝑟 and setting it to zero:

𝑑𝑃(𝑟)
𝑑𝑟 = 0

Let’s compute the derivative:

𝑑𝑃(𝑟)
𝑑𝑟 = 𝑑

𝑑𝑟 [(𝜋𝑎3
0)−1 𝑟2 exp(−2𝑟

𝑎0
)]

Using the product rule:

𝑑𝑃(𝑟)
𝑑𝑟 = (𝜋𝑎3

0)−1 [ 𝑑
𝑑𝑟 (𝑟2) exp(−2𝑟

𝑎0
) + 𝑟2 𝑑

𝑑𝑟 (exp(−2𝑟
𝑎0

))]
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First, compute the derivative of 𝑟2:
𝑑
𝑑𝑟 (𝑟2) = 2𝑟

Next, compute the derivative of exp (−2𝑟
𝑎0

):

𝑑
𝑑𝑟 (exp(−2𝑟

𝑎0
)) = exp(−2𝑟

𝑎0
) (−2

𝑎0
)

Substituting these results back into the expression for 𝑑𝑃(𝑟)
𝑑𝑟 :

𝑑𝑃 (𝑟)
𝑑𝑟 = (𝜋𝑎3

0)−1 [2𝑟 exp(−2𝑟
𝑎0

) + 𝑟2 exp(−2𝑟
𝑎0

) (−2
𝑎0

)]

Factor out exp (−2𝑟
𝑎0

):

𝑑𝑃(𝑟)
𝑑𝑟 = (𝜋𝑎3

0)−1 exp(−2𝑟
𝑎0

) [2𝑟 − 2𝑟2

𝑎0
]

Set this expression equal to zero to find the maximum:

2𝑟 − 2𝑟2

𝑎0
= 0

Factor out 2𝑟:
2𝑟 (1 − 𝑟

𝑎0
) = 0

This gives two solutions:
𝑟 = 0 or 𝑟 = 𝑎0

Since 𝑟 = 0 corresponds to the nucleuswhere the probability is notmaximum, themost probable
position is 𝑟 = 𝑎0.

Conclusion:

The most probable position of the electron in the hydrogen atom’s ground state is 𝑟 = 𝑎0, which
corresponds to the radius of the first Bohr orbit. This result is consistent with the classical Bohr
model of the atom, where the electron is most likely to be found at this radius.
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53 Let 𝜎⃗ be the vector operator with components equal to
Pauli’s spin matrices 𝜎𝑥, 𝜎𝑦, 𝜎𝑧. If ⃗𝑎 and 𝑏⃗ are vectors in
3D space, prove the identity (𝜎⃗⋅ ⃗𝑎)(𝜎⃗⋅𝑏⃗) = ⃗𝑎⋅ ⃗𝑏+𝑖𝜎⃗⋅( ⃗𝑎× ⃗𝑏).

Introduction:

The Pauli matrices are often used in quantum mechanics to describe spin-1
2 particles. These

matrices can be combined into a vector operator 𝜎⃗ = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧), where 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 are the
Pauli matrices. The goal is to prove the given identity, which relates the product of two such
operators to the dot product and cross product of the vectors ⃗𝑎 and ⃗𝑏.
Solution:

The Pauli matrices are defined as:

𝜎𝑥 = (0 1
1 0) , 𝜎𝑦 = (0 −𝑖

𝑖 0 ) , 𝜎𝑧 = (1 0
0 −1)

Let ⃗𝑎 = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) and ⃗𝑏 = (𝑏𝑥, 𝑏𝑦, 𝑏𝑧). The dot products are:

𝜎⃗ ⋅ ⃗𝑎 = 𝑎𝑥𝜎𝑥 + 𝑎𝑦𝜎𝑦 + 𝑎𝑧𝜎𝑧

𝜎⃗ ⋅ ⃗𝑏 = 𝑏𝑥𝜎𝑥 + 𝑏𝑦𝜎𝑦 + 𝑏𝑧𝜎𝑧

We need to compute (𝜎⃗ ⋅ ⃗𝑎)(𝜎⃗ ⋅ ⃗𝑏):

(𝜎⃗ ⋅ ⃗𝑎)(𝜎⃗ ⋅ 𝑏⃗) = (𝑎𝑥𝜎𝑥 + 𝑎𝑦𝜎𝑦 + 𝑎𝑧𝜎𝑧)(𝑏𝑥𝜎𝑥 + 𝑏𝑦𝜎𝑦 + 𝑏𝑧𝜎𝑧)

Expanding the product:

(𝜎⃗ ⋅ ⃗𝑎)(𝜎⃗ ⋅ ⃗𝑏) = 𝑎𝑥𝑏𝑥𝜎2
𝑥 + 𝑎𝑥𝑏𝑦𝜎𝑥𝜎𝑦 + 𝑎𝑥𝑏𝑧𝜎𝑥𝜎𝑧

+ 𝑎𝑦𝑏𝑥𝜎𝑦𝜎𝑥 + 𝑎𝑦𝑏𝑦𝜎2
𝑦 + 𝑎𝑦𝑏𝑧𝜎𝑦𝜎𝑧

+ 𝑎𝑧𝑏𝑥𝜎𝑧𝜎𝑥 + 𝑎𝑧𝑏𝑦𝜎𝑧𝜎𝑦 + 𝑎𝑧𝑏𝑧𝜎2
𝑧

Recall the following properties of the Pauli matrices:

𝜎𝑖𝜎𝑗 = 𝛿𝑖𝑗𝐼 + 𝑖𝜖𝑖𝑗𝑘𝜎𝑘

where 𝛿𝑖𝑗 is the Kronecker delta and 𝜖𝑖𝑗𝑘 is the Levi-Civita symbol.

Using these properties:
𝜎2

𝑥 = 𝜎2
𝑦 = 𝜎2

𝑧 = 𝐼
𝜎𝑥𝜎𝑦 = 𝑖𝜎𝑧, 𝜎𝑦𝜎𝑥 = −𝑖𝜎𝑧

𝜎𝑦𝜎𝑧 = 𝑖𝜎𝑥, 𝜎𝑧𝜎𝑦 = −𝑖𝜎𝑥

𝜎𝑧𝜎𝑥 = 𝑖𝜎𝑦, 𝜎𝑥𝜎𝑧 = −𝑖𝜎𝑦

Substituting these into the expanded expression:

(𝜎⃗⋅ ⃗𝑎)(𝜎⃗⋅ ⃗𝑏) = 𝑎𝑥𝑏𝑥𝐼+𝑎𝑦𝑏𝑦𝐼+𝑎𝑧𝑏𝑧𝐼+𝑖(𝑎𝑥𝑏𝑦−𝑎𝑦𝑏𝑥)𝜎𝑧+𝑖(𝑎𝑦𝑏𝑧−𝑎𝑧𝑏𝑦)𝜎𝑥+𝑖(𝑎𝑧𝑏𝑥−𝑎𝑥𝑏𝑧)𝜎𝑦
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This expression can be rewritten as:

(𝜎⃗ ⋅ ⃗𝑎)(𝜎⃗ ⋅ ⃗𝑏) = ( ⃗𝑎 ⋅ ⃗𝑏)𝐼 + 𝑖𝜎⃗ ⋅ ( ⃗𝑎 × ⃗𝑏)

Since 𝐼 is the identity matrix, we can drop it:

(𝜎⃗ ⋅ ⃗𝑎)(𝜎⃗ ⋅ ⃗𝑏) = ⃗𝑎 ⋅ ⃗𝑏 + 𝑖𝜎⃗ ⋅ ( ⃗𝑎 × ⃗𝑏)

Conclusion:

The identity is proved, demonstrating that the product of two Pauli vector operators can be
expressed as the sum of the dot product and an imaginary term involving the cross product.
This result is significant in quantum mechanics, particularly in the study of spin interactions.

7



A/P

Solution of Quantum Mechanics PYQs ABHI PHYSICS

54 The normalizedwave function for the electron in the ground
state of the hydrogen atom is given by𝜓(𝑟) = 1

(𝜋𝑎3
0)1/2𝑒−𝑟/𝑎0

where 𝑎0 is the radius of the first Bohr orbit. Calculate ⟨𝑟⟩
and ⟨1

𝑟⟩.
Introduction:

The expectation values ⟨𝑟⟩ and ⟨1
𝑟⟩ describe the average radial distance and the average in-

verse radial distance of the electron, respectively. These expectation values are important for
understanding the quantum mechanical properties of the hydrogen atom.

The expectation values can be calculated using the following integrals:

⟨𝑟⟩ = ∫
∞

0
𝑟|𝜓(𝑟)|2𝑟2 𝑑𝑟

⟨1
𝑟⟩ = ∫

∞

0

1
𝑟 |𝜓(𝑟)|2𝑟2 𝑑𝑟

Solution:

The given normalized wave function is:

𝜓(𝑟) = 1
(𝜋𝑎3

0)1/2 𝑒−𝑟/𝑎0

The corresponding probability density is:

|𝜓(𝑟)|2 = 1
𝜋𝑎3

0
𝑒−2𝑟/𝑎0

1. Calculation of ⟨𝑟⟩:
The expectation value is given by:

⟨𝑟⟩ = ∫
∞

0
𝑟|𝜓(𝑟)|2𝑟2 𝑑𝑟

Substituting the probability density:

⟨𝑟⟩ = ∫
∞

0
𝑟 ⋅ 1

𝜋𝑎3
0
𝑒−2𝑟/𝑎0𝑟2 𝑑𝑟

⟨𝑟⟩ = 1
𝜋𝑎3

0
∫

∞

0
𝑟3𝑒−2𝑟/𝑎0 𝑑𝑟

Let’s perform a substitution: let 𝑢 = 2𝑟
𝑎0
, so 𝑑𝑢 = 2

𝑎0
𝑑𝑟, or equivalently, 𝑑𝑟 = 𝑎0

2 𝑑𝑢. Also,
𝑟 = 𝑎0𝑢

2 .
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Substituting into the integral gives:

⟨𝑟⟩ = 1
𝜋𝑎3

0
∫

∞

0
(𝑎0𝑢

2 )
3

⋅ 𝑎0
2 𝑒−𝑢 𝑑𝑢

⟨𝑟⟩ = 𝑎4
0

4𝜋𝑎3
0

∫
∞

0
𝑢3𝑒−𝑢 𝑑𝑢

⟨𝑟⟩ = 𝑎0
4𝜋 ∫

∞

0
𝑢3𝑒−𝑢 𝑑𝑢

The integral ∫∞
0 𝑢3𝑒−𝑢 𝑑𝑢 is a standard gamma function integral, Γ(4) = 3! = 6.

Thus:
⟨𝑟⟩ = 𝑎0

4 × 6 = 3𝑎0
2

So, the expectation value ⟨𝑟⟩ is:
⟨𝑟⟩ = 3𝑎0

2

2. Calculation of ⟨1
𝑟⟩:

The expectation value is given by:

⟨1
𝑟⟩ = ∫

∞

0

1
𝑟 |𝜓(𝑟)|2𝑟2 𝑑𝑟

Substituting the probability density:

⟨1
𝑟⟩ = ∫

∞

0

1
𝑟 ⋅ 1

𝜋𝑎3
0
𝑒−2𝑟/𝑎0𝑟2 𝑑𝑟

⟨1
𝑟⟩ = 1

𝜋𝑎3
0

∫
∞

0
𝑟𝑒−2𝑟/𝑎0 𝑑𝑟

Using the same substitution as before: 𝑢 = 2𝑟
𝑎0
, 𝑑𝑟 = 𝑎0

2 𝑑𝑢, and 𝑟 = 𝑎0𝑢
2 :

⟨1
𝑟⟩ = 1

𝜋𝑎3
0

∫
∞

0

𝑎0𝑢
2 ⋅ 𝑎0

2 𝑒−𝑢 𝑑𝑢

⟨1
𝑟⟩ = 𝑎2

0
𝜋𝑎3

0
∫

∞

0
𝑢𝑒−𝑢 𝑑𝑢

The integral ∫∞
0 𝑢𝑒−𝑢 𝑑𝑢 is a standard gamma function integral, Γ(2) = 1! = 1.

Thus:
⟨1

𝑟⟩ = 𝑎2
0

𝜋𝑎3
0

× 1 = 1
𝑎0
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So, the expectation value ⟨1
𝑟⟩ is:

⟨1
𝑟⟩ = 1

𝑎0

Conclusion:

The calculated expectation values for the radial distance and its inverse are ⟨𝑟⟩ = 3𝑎0
4 and

⟨1
𝑟⟩ = 1

𝑎0
. These results are consistent with the quantummechanical description of the hydrogen

atom.
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55 Using the definition 𝐿⃗ = ⃗𝑟 × ⃗𝑝 of the orbital angular mo-
mentum operator, evaluate [𝐿𝑥, 𝐿𝑦].

Introduction:

The orbital angular momentum operator 𝐿⃗ is defined as 𝐿⃗ = ⃗𝑟 × ⃗𝑝, where ⃗𝑟 is the position
operator and ⃗𝑝 is the momentum operator. The components of the angular momentum operator
are given by:

𝐿𝑥 = 𝑦𝑝𝑧 − 𝑧𝑝𝑦, 𝐿𝑦 = 𝑧𝑝𝑥 − 𝑥𝑝𝑧, and 𝐿𝑧 = 𝑥𝑝𝑦 − 𝑦𝑝𝑥.

We want to evaluate the commutator [𝐿𝑥, 𝐿𝑦].
Solution:

Start with the definitions of 𝐿𝑥 and 𝐿𝑦:

𝐿𝑥 = 𝑦𝑝𝑧 − 𝑧𝑝𝑦, 𝐿𝑦 = 𝑧𝑝𝑥 − 𝑥𝑝𝑧.

The commutator is:

[𝐿𝑥, 𝐿𝑦] = [𝑦𝑝𝑧 − 𝑧𝑝𝑦, 𝑧𝑝𝑥 − 𝑥𝑝𝑧].

Expanding the commutator using the distributive property:

[𝐿𝑥, 𝐿𝑦] = [𝑦𝑝𝑧, 𝑧𝑝𝑥] − [𝑦𝑝𝑧, 𝑥𝑝𝑧] − [𝑧𝑝𝑦, 𝑧𝑝𝑥] + [𝑧𝑝𝑦, 𝑥𝑝𝑧].

We will evaluate each of these commutators individually.

1. Evaluate [𝑦𝑝𝑧, 𝑧𝑝𝑥]:
[𝑦𝑝𝑧, 𝑧𝑝𝑥] = 𝑦[𝑝𝑧, 𝑧]𝑝𝑥 + [𝑦, 𝑧]𝑝𝑧𝑝𝑥.

Since [𝑦, 𝑧] = 0 (different components commute), we are left with:

[𝑦𝑝𝑧, 𝑧𝑝𝑥] = 𝑦[𝑝𝑧, 𝑧]𝑝𝑥.

The commutator [𝑝𝑧, 𝑧] = −𝑖ℏ, so:

[𝑦𝑝𝑧, 𝑧𝑝𝑥] = −𝑖ℏ𝑦𝑝𝑥.

2. Evaluate [𝑦𝑝𝑧, 𝑥𝑝𝑧]:
[𝑦𝑝𝑧, 𝑥𝑝𝑧] = [𝑦, 𝑥]𝑝2

𝑧 + 𝑦[𝑝𝑧, 𝑥]𝑝𝑧.
Again, [𝑦, 𝑥] = 0 (different components commute), and [𝑝𝑧, 𝑥] = 0, so:

[𝑦𝑝𝑧, 𝑥𝑝𝑧] = 0.

3. Evaluate [𝑧𝑝𝑦, 𝑧𝑝𝑥]:
[𝑧𝑝𝑦, 𝑧𝑝𝑥] = 𝑧[𝑝𝑦, 𝑧]𝑝𝑥 + [𝑧, 𝑧]𝑝𝑦𝑝𝑥.

11



A/P

Solution of Quantum Mechanics PYQs ABHI PHYSICS

Since [𝑧, 𝑧] = 0 and [𝑝𝑦, 𝑧] = 0 (different components commute), we get:

[𝑧𝑝𝑦, 𝑧𝑝𝑥] = 0.

4. Evaluate [𝑧𝑝𝑦, 𝑥𝑝𝑧]:
[𝑧𝑝𝑦, 𝑥𝑝𝑧] = [𝑧, 𝑥]𝑝𝑦𝑝𝑧 + 𝑧[𝑝𝑦, 𝑥]𝑝𝑧.

Since [𝑧, 𝑥] = 0 and [𝑝𝑦, 𝑥] = 𝑖ℏ, we have:

[𝑧𝑝𝑦, 𝑥𝑝𝑧] = 𝑖ℏ𝑧𝑝𝑧.

Putting it all together:

[𝐿𝑥, 𝐿𝑦] = −𝑖ℏ𝑦𝑝𝑥 + 0 + 0 + 𝑖ℏ𝑧𝑝𝑧.

This can be rewritten as:

[𝐿𝑥, 𝐿𝑦] = 𝑖ℏ(𝑧𝑝𝑧 − 𝑦𝑝𝑥).

Notice that 𝑧𝑝𝑧 − 𝑦𝑝𝑥 is the expression for 𝐿𝑧. Therefore:

[𝐿𝑥, 𝐿𝑦] = 𝑖ℏ𝐿𝑧.

Conclusion:

The commutator [𝐿𝑥, 𝐿𝑦] is given by:

[𝐿𝑥, 𝐿𝑦] = 𝑖ℏ𝐿𝑧 .

This result is consistent with the standard commutation relations for the components of angular
momentum in quantum mechanics.
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56 Calculate the probability of finding the electron within a
distance 𝑟0 of the proton in the ground state.

Introduction:

The normalized wave function for an electron in the ground state of the hydrogen atom is given
by:

𝜓(𝑟) = 1
√𝜋𝑎3

0

𝑒− 𝑟
𝑎0

where 𝑎0 is the Bohr radius, representing the most probable distance between the electron and
the nucleus in a hydrogen atom. The wave function 𝜓(𝑟) describes the quantum state of the
electron in the hydrogen atom, and its square gives the probability density of finding the
electron at a distance 𝑟 from the nucleus. Wave Function Graph: The graph below illus-
trates the ground state wave function 𝜓(𝑟) as a function of distance 𝑟 from the nucleus, showing
an exponential decay from the nucleus.

Solution:

The probability of finding the electron within a distance 𝑟0 from the proton is given by the
integral of the probability density function over the desired range:

𝑃(𝑟 ≤ 𝑟0) = ∫
𝑟0

0
|𝜓(𝑟)|2 4𝜋𝑟2 𝑑𝑟

Substitute the wave function 𝜓(𝑟):
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𝑃(𝑟 ≤ 𝑟0) = ∫
𝑟0

0

⎛⎜⎜
⎝

1
√𝜋𝑎3

0

𝑒− 𝑟
𝑎0

⎞⎟⎟
⎠

2

4𝜋𝑟2 𝑑𝑟

Simplifying, we get:

𝑃(𝑟 ≤ 𝑟0) = 4
𝑎3

0
∫

𝑟0

0
𝑟2𝑒− 2𝑟

𝑎0 𝑑𝑟

Now, evaluate the integral using the formula for the integral of 𝑟2𝑒−𝛼𝑟:

∫
𝑟0

0
𝑟2𝑒− 2𝑟

𝑎0 𝑑𝑟 = (𝑎3
0

8 ) (1 − 𝑒− 2𝑟0
𝑎0 (1 + 2𝑟0

𝑎0
+ 2𝑟2

0
𝑎2

0
))

Substitute this back to find the probability:

𝑃(𝑟 ≤ 𝑟0) = 1 − 𝑒− 2𝑟0
𝑎0 (1 + 2𝑟0

𝑎0
+ 2𝑟2

0
𝑎2

0
)

Conclusion:

This probability distribution reflects the quantum mechanical nature of the electron in the hy-
drogen atom, where there is a high probability of finding the electron close to the nucleus, and
this probability decreases as the distance increases. it helps predict atomic behavior and
electron interactions.
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57 If ̂𝑥 and ̂𝑝 are the position andmomentumoperators, prove
the commutation relation [ ̂𝑝2, ̂𝑥] = −2𝑖ℏ ̂𝑝

Introduction:

In quantummechanics, the position ( ̂𝑥) and momentum ( ̂𝑝) operators are fundamental operators
that follow specific commutation relations. The commutation relation between these operators
reflects the uncertainty principle, which states that the position and momentum of a particle can-
not be precisely known simultaneously. One of the important commutation relations involving
these operators is [ ̂𝑝2, ̂𝑥] = −2𝑖ℏ ̂𝑝.
Solution:

To prove the commutation relation [ ̂𝑝2, ̂𝑥] = −2𝑖ℏ ̂𝑝, we start by using the basic commutation
relation between position and momentum operators:

[ ̂𝑥, ̂𝑝] = 𝑖ℏ

1. Consider the expression for the commutator [ ̂𝑝2, ̂𝑥]:

[ ̂𝑝2, ̂𝑥] = ̂𝑝[ ̂𝑝, ̂𝑥] + [ ̂𝑝, ̂𝑥] ̂𝑝

2. Substitute the known commutation relation [ ̂𝑥, ̂𝑝] = 𝑖ℏ, which gives:

[ ̂𝑝, ̂𝑥] = −𝑖ℏ

Therefore,

[ ̂𝑝2, ̂𝑥] = ̂𝑝(−𝑖ℏ) + (−𝑖ℏ) ̂𝑝

[ ̂𝑝2, ̂𝑥] = −𝑖ℏ ̂𝑝 − 𝑖ℏ ̂𝑝

[ ̂𝑝2, ̂𝑥] = −2𝑖ℏ ̂𝑝

Conclusion:

The commutation relation [ ̂𝑝2, ̂𝑥] = −2𝑖ℏ ̂𝑝 demonstrates how the momentum operator squared
interacts with the position operator in quantum mechanics. This relation highlights the non-
commutative nature of quantum operators, which is a key aspect of the uncertainty principle.
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58 Write down Pauli spin matrices. Express 𝐽𝑥, 𝐽𝑦, and 𝐽𝑧 in
terms of Pauli spin matrices.

Introduction:

The Pauli spin matrices are a set of three 2 × 2 complex matrices that represent the spin
operators for a spin-1

2 particle in quantum mechanics. They are fundamental in describing the
spin properties of particles such as electrons. The Pauli matrices are usually denoted by 𝜎𝑥, 𝜎𝑦,
and 𝜎𝑧.

Solution:

The Pauli spin matrices are defined as:

𝜎𝑥 = (0 1
1 0) , 𝜎𝑦 = (0 −𝑖

𝑖 0 ) , 𝜎𝑧 = (1 0
0 −1)

The spin angular momentum operators 𝐽𝑥, 𝐽𝑦, and 𝐽𝑧 for a spin-1
2 particle can be expressed in

terms of the Pauli matrices as follows:

𝐽𝑥 = ℏ
2𝜎𝑥, 𝐽𝑦 = ℏ

2𝜎𝑦, 𝐽𝑧 = ℏ
2𝜎𝑧

Conclusion:

The Pauli spin matrices 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 form the basis for representing the spin operators 𝐽𝑥,
𝐽𝑦, and 𝐽𝑧 of a spin-1

2 particle. These matrices are used extensively in quantum mechanics to
describe the spin state of particles, calculate spin dynamics, and solve various quantum systems
involving spin. Their importance lies in their ability to represent the intrinsic angular momen-
tum properties of fundamental particles.
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59 Using the commutation relations [𝑥, 𝑝𝑥] = [𝑦, 𝑝𝑦] = [𝑧, 𝑝𝑧] =
𝑖ℏ, deduce the commutation relation between the compo-
nents of angular momentum operator L.

Introduction:

In quantum mechanics, the angular momentum operator L has three components: 𝐿𝑥, 𝐿𝑦, and
𝐿𝑧. These components satisfy certain commutation relations derived from the fundamental
commutation relations between position (𝑥, 𝑦, 𝑧) and momentum (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) operators. The
goal is to deduce the commutation relations among 𝐿𝑥, 𝐿𝑦, and 𝐿𝑧.

Solution:

The angular momentum operators in quantum mechanics are defined as:

𝐿𝑥 = 𝑦𝑝𝑧 − 𝑧𝑝𝑦, 𝐿𝑦 = 𝑧𝑝𝑥 − 𝑥𝑝𝑧, 𝐿𝑧 = 𝑥𝑝𝑦 − 𝑦𝑝𝑥

We use the commutation relations between position and momentum operators:

[𝑥, 𝑝𝑥] = 𝑖ℏ, [𝑦, 𝑝𝑦] = 𝑖ℏ, [𝑧, 𝑝𝑧] = 𝑖ℏ

and all other commutators like [𝑥, 𝑝𝑦], [𝑥, 𝑝𝑧], etc., are zero.
Now, let us compute the commutation relations between the components of L.

1. Commutator of 𝐿𝑥 and 𝐿𝑦:

[𝐿𝑥, 𝐿𝑦] = [(𝑦𝑝𝑧 − 𝑧𝑝𝑦), (𝑧𝑝𝑥 − 𝑥𝑝𝑧)]

Expanding the commutator:

[𝐿𝑥, 𝐿𝑦] = 𝑦𝑝𝑧𝑧𝑝𝑥 − 𝑦𝑝𝑧𝑥𝑝𝑧 − 𝑧𝑝𝑦𝑧𝑝𝑥 + 𝑧𝑝𝑦𝑥𝑝𝑧

Using the commutation relations:

[𝐿𝑥, 𝐿𝑦] = 𝑦[𝑝𝑧, 𝑧]𝑝𝑥 + [𝑧, 𝑝𝑧]𝑝𝑦𝑥 = 𝑖ℏ𝐿𝑧

2. Commutator of 𝐿𝑦 and 𝐿𝑧:

[𝐿𝑦, 𝐿𝑧] = [(𝑧𝑝𝑥 − 𝑥𝑝𝑧), (𝑥𝑝𝑦 − 𝑦𝑝𝑥)]

Expanding the commutator:

[𝐿𝑦, 𝐿𝑧] = 𝑧𝑝𝑥𝑥𝑝𝑦 − 𝑧𝑝𝑥𝑦𝑝𝑥 − 𝑥𝑝𝑧𝑥𝑝𝑦 + 𝑥𝑝𝑧𝑦𝑝𝑥

Using the commutation relations:
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[𝐿𝑦, 𝐿𝑧] = 𝑧[𝑝𝑥, 𝑥]𝑝𝑦 + [𝑥, 𝑝𝑥]𝑝𝑧𝑦 = 𝑖ℏ𝐿𝑥

3. Commutator of 𝐿𝑧 and 𝐿𝑥:

[𝐿𝑧, 𝐿𝑥] = [(𝑥𝑝𝑦 − 𝑦𝑝𝑥), (𝑦𝑝𝑧 − 𝑧𝑝𝑦)]

Expanding the commutator:

[𝐿𝑧, 𝐿𝑥] = 𝑥𝑝𝑦𝑦𝑝𝑧 − 𝑥𝑝𝑦𝑧𝑝𝑦 − 𝑦𝑝𝑥𝑦𝑝𝑧 + 𝑦𝑝𝑥𝑧𝑝𝑦

Using the commutation relations:

[𝐿𝑧, 𝐿𝑥] = 𝑥[𝑝𝑦, 𝑦]𝑝𝑧 + [𝑦, 𝑝𝑦]𝑝𝑥𝑧 = 𝑖ℏ𝐿𝑦

Conclusion:

We have deduced the commutation relations between the components of the angular momentum
operator L:

[𝐿𝑥, 𝐿𝑦] = 𝑖ℏ𝐿𝑧, [𝐿𝑦, 𝐿𝑧] = 𝑖ℏ𝐿𝑥, [𝐿𝑧, 𝐿𝑥] = 𝑖ℏ𝐿𝑦

These relations reflect the underlying algebraic structure of angular momentum in quantum
mechanics, which is fundamental to the study of rotational symmetries and quantum states.

18



A/P

Solution of Quantum Mechanics PYQs ABHI PHYSICS

60 Solve the Schrödinger equation for a particle in a three-
dimensional rectangular potential barrier. Explain the
terms degenerate and non-degenerate states in this con-
text.

Introduction:

The Schrödinger equation is a fundamental equation in quantum mechanics that describes how
the quantum state of a physical system changes with time. For a particle in a three-dimensional
rectangular potential barrier, we solve the time-independent Schrödinger equation, which is
given by:

− ℏ2

2𝑚∇2𝜓(𝑥, 𝑦, 𝑧) + 𝑉 (𝑥, 𝑦, 𝑧)𝜓(𝑥, 𝑦, 𝑧) = 𝐸𝜓(𝑥, 𝑦, 𝑧), (1)

where:

• ℏ is the reduced Planck’s constant,

• 𝑚 is the mass of the particle,

• 𝜓(𝑥, 𝑦, 𝑧) is the wave function,
• 𝑉 (𝑥, 𝑦, 𝑧) is the potential energy,
• 𝐸 is the total energy of the particle.

In a three-dimensional rectangular potential barrier, the potential 𝑉 (𝑥, 𝑦, 𝑧) is defined as:

𝑉 (𝑥, 𝑦, 𝑧) = {0 if 0 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑏, 0 < 𝑧 < 𝑐,
𝑉0 otherwise,

where 𝑎, 𝑏, and 𝑐 are the dimensions of the potential well.
Graph of the Wave Function:

To visualize the behavior of the wave function 𝜓(𝑥, 𝑦, 𝑧) inside the potential barrier, a plot is
generated below to illustrate its variation in two dimensions:

Figure 1: Wave Function for a Particle in a Rectangular Potential Barrier
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Solution:

To solve the Schrödinger equation, we employ the method of separation of variables. Assume
the wave function can be separated into three parts:

𝜓(𝑥, 𝑦, 𝑧) = 𝑋(𝑥)𝑌 (𝑦)𝑍(𝑧). (2)

Substitute this into the Schrödinger equation:

− ℏ2

2𝑚 (𝑑2𝑋
𝑑𝑥2 𝑌 𝑍 + 𝑋 𝑑2𝑌

𝑑𝑦2 𝑍 + 𝑋𝑌 𝑑2𝑍
𝑑𝑧2 ) + 𝑉 (𝑥, 𝑦, 𝑧)𝑋𝑌 𝑍 = 𝐸𝑋𝑌 𝑍. (3)

Dividing through by 𝑋𝑌 𝑍, we get:

− ℏ2

2𝑚 ( 1
𝑋

𝑑2𝑋
𝑑𝑥2 + 1

𝑌
𝑑2𝑌
𝑑𝑦2 + 1

𝑍
𝑑2𝑍
𝑑𝑧2 ) + 𝑉 (𝑥, 𝑦, 𝑧) = 𝐸. (4)

Since the potential 𝑉 (𝑥, 𝑦, 𝑧) is zero inside the barrier, we can separate the equation into three
independent differential equations:

𝑑2𝑋
𝑑𝑥2 = −𝑘2

𝑥𝑋(𝑥), 𝑑2𝑌
𝑑𝑦2 = −𝑘2

𝑦𝑌 (𝑦), 𝑑2𝑍
𝑑𝑧2 = −𝑘2

𝑧𝑍(𝑧), (5)

where 𝑘2
𝑥 = 2𝑚𝐸𝑥

ℏ2 , 𝑘2
𝑦 = 2𝑚𝐸𝑦

ℏ2 , and 𝑘2
𝑧 = 2𝑚𝐸𝑧

ℏ2 are the separation constants, and 𝐸 =
𝐸𝑥 + 𝐸𝑦 + 𝐸𝑧.

The general solutions for these equations inside the well are:

𝑋(𝑥) = 𝐴 sin(𝑘𝑥𝑥) + 𝐵 cos(𝑘𝑥𝑥),
𝑌 (𝑦) = 𝐶 sin(𝑘𝑦𝑦) + 𝐷 cos(𝑘𝑦𝑦),
𝑍(𝑧) = 𝐸 sin(𝑘𝑧𝑧) + 𝐹 cos(𝑘𝑧𝑧).

Applying boundary conditions 𝑋(0) = 𝑋(𝑎) = 0, 𝑌 (0) = 𝑌 (𝑏) = 0, and 𝑍(0) = 𝑍(𝑐) = 0,
the solutions reduce to:

𝑋(𝑥) = 𝐴 sin(𝑛𝑥𝜋𝑥
𝑎 ) , 𝑛𝑥 = 1, 2, 3, … ,

𝑌 (𝑦) = 𝐶 sin(𝑛𝑦𝜋𝑦
𝑏 ) , 𝑛𝑦 = 1, 2, 3, … ,

𝑍(𝑧) = 𝐸 sin(𝑛𝑧𝜋𝑧
𝑐 ) , 𝑛𝑧 = 1, 2, 3, … .

The energy levels are given by:

𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
= ℏ2𝜋2

2𝑚 (𝑛2
𝑥

𝑎2 + 𝑛2
𝑦

𝑏2 + 𝑛2
𝑧

𝑐2 ) . (6)
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Degenerate and Non-Degenerate States:

In the context of quantum mechanics, degenerate states refer to different quantum states that
have the same energy. For the three-dimensional rectangular potential barrier, if multiple sets of
quantum numbers (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) result in the same energy 𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧

, these states are degenerate.

A non-degenerate state is a quantum state that has a unique set of quantum numbers for a given
energy level, meaning no other state shares the same energy.

For example, if 𝑎 = 𝑏 = 𝑐, then 𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
depends only on the sum 𝑛2

𝑥 + 𝑛2
𝑦 + 𝑛2

𝑧. Thus,
different combinations such as (1, 1, 2) and (2, 1, 1) will give the same energy, resulting in
degeneracy. In contrast, if 𝑎 ≠ 𝑏 ≠ 𝑐, the energies are likely to be non-degenerate.
Conclusion:

The Schrödinger equation for a particle in a three-dimensional rectangular potential barrier
shows that the energy levels depend on the dimensions of the barrier and the quantum num-
bers (𝑛𝑥, 𝑛𝑦, 𝑛𝑧). Degenerate states occur when different quantum states have the same energy,
which is influenced by the symmetry of the potential barrier. Non-degenerate states occur
when each state has a unique energy level. This concept is critical in understanding the behavior
of quantum particles in confined geometries and has applications in quantum wells, quantum
dots, and nanotechnology.
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