
UPSC PHYSICS
OPTIONAL

Quantum Mechanics Solutions

PART 1 7

Abhi Physics

www.abhiphysics.com



A/P
UPSC Civil Services Examination

2



A/P

UPSC PHYSICS PYQ SOLUTION
Quantum Mechanics - Part 1 to 7

Contents
1 Derive Bohr’s angular momentum quantization condition in Bohr’s

atomic model from the concept of de Broglie waves. (2010) 9

2 Calculate the wavelength of de Broglie waves associated with elec-
trons accelerated through a potential difference of 200 Volts. (2011) 10

3 Estimate the size of the hydrogen atom and the ground state energy
from the uncertainty principle. (2012) 11

4 Use the uncertainty principle to estimate the ground state energy
of a linear harmonic oscillator. (2012) 13

5 In a series of experiments on the determination of the mass of a
certain elementary particle, the results showed a variation of ±20me,
where me is the electron mass. Estimate the lifetime of the particle.
(2013) 14

6 Find the de Broglie wavelength of neutron and electron with kinetic
energy 500 eV. (2014) 15

7 The mean life of Lambda (Λ0) particle is 2.6× 10−10 s. What will be
the uncertainty in the determination of its mass in eV? (2014) 17

8 Find the energy, momentum and wavelength of photon emitted by
a hydrogen atom making a direct transition from an excited state
with n = 10 to the ground state. Also find the recoil speed of the
hydrogen atom in this process. (2016) 18

9 An electron is confined to move between two rigid walls separated
by 10−9 m. Compute the de Broglie wavelengths representing the
first three allowed energy states of the electron and the correspond-
ing energies. (2016) 19

10 A typical atomic radius is about 5 × 10−15 m and the energy of β-
particle emitted from a nucleus is at most of the order of 1 MeV.
Prove on the basis of uncertainty principle that the electrons are
not present in nuclei. (2016) 22

11 A beam 4.0 keV electrons from a source is incident on a target
50.0 cm away. Find the radius of the electron beam spot due to
Heisenberg’s uncertainty principle. (2017) 24

12 Estimate the de Broglie wavelength of the electron orbiting in the
first excited state of the hydrogen atom. (2017) 27

13 Show that the mass and linear momentum of a quantum mechanical
particle can be given by m = h

λv and p = h
λ , respectively, where

h, λ and v are Planck’s constant, wavelength, and velocity of the
particle, respectively. Comment on the wave-particle duality from

3



A/P

these relations. (2019) 29

14 State and express mathematically the three uncertainty principles
of Heisenberg. Highlight the physical significance of these princi-
ples in the development of Quantum Mechanics. (2019) 31

15 For a free quantum mechanical particle under the influence of a
one-dimensional potential, show that the energy is quantized in
discrete fashion. How do these energy values differ from those of a
linear harmonic oscillator? (2019) 33

16 Using the uncertainty principle ∆x∆p ≥ ℏ/2, estimate the ground
state energy of a harmonic oscillator. (2020) 35

17 A blue lamp emits light of mean wavelength of 4500 Å. The rating
of the lamp is 150 W and its 8% of the energy appears as light.
How many photons are emitted per second by the lamp? (2020) 37

18 Consider a Hermitian operator A with property A3 = 1. Show that
A = 1. (2020) 38

19 Find the uncertainty in the momentum of a particle when its po-
sition is determined within 0.02 cm. Find also the uncertainty in
the velocity of an electron and α-particle respectively when they
are located within 15× 10−8cm. (2020) 39

20 A particle of rest mass m0 has a kinetic energy K, show that its de
Broglie wavelength is given by λ = hc√

K(K+2m0c2)
. Hence calculate

the wavelength of an electron of kinetic energy 2 MeV. What will
be the value of λ if K ≪ m0c

2? (2020) 40

21 What is de Broglie concept of matter wave? Evaluate de Broglie
wavelength of Helium that is accelerated through 300V. (Given
mass of proton = mass of neutron = 1.67× 10−27 kg) 42

22 Obtain an expression for the probability current for the plane wave
ψ(x, t) = exp[i(kx− ωt)]. Interpret your result. 44

23 A system is described by the Hamiltonian operator H = − d2

dx2
+

x2. Show that the function Ax exp
(
−x2

2

)
is an eigenfunction of H.

Determine the eigenvalues of H. 45

24 Solve the Schrödinger equation for a particle of mass m in an infi-

nite rectangular well defined by V (x) =

{
0 ; 0 ≤ x ≤ L

∞ ;x < 0, x > L
Obtain the normalized eigenfunctions and the corresponding eigen-
values. 47

25 Normalize the wave function ψ(x) = e−|x| sin(ax). 49

26 Consider the one-dimensional wavefunction ψ(x) = Axe−kx, (0 ≤ x <
∞; k > 0)
i. Calculate A so that ψ(x) is normalized.
ii. Using Schrödinger’s equation find the potential V (x) and en-

4



A/P

ergy E for which ψ(x) is an eigenfunction. (Assume that as x →
∞, V (x) → 0). 51

27 (a) Solve the radial part of the time-independent Schrödinger equa-
tion for a hydrogen atom. Obtain an expression for the energy
eigenvalues.
(b) What is the degree of degeneracy of the energy eigenvalues?
What happens if the spin of the electron is taken into account? 54

28 Obtain the time-dependent Schrödinger equation for a particle.
Hence deduce the time-independent Schrödinger equation. 57

29 Solve the Schrödinger equation for a particle of mass m confined
in a one-dimensional potential well of the form

V (x) =

{
0 ; 0 ≤ x ≤ L

∞ ; x < 0, x > L

Obtain the discrete energy values and the normalized eigenfunc-
tions. 59

30 An electron is moving in a one-dimensional box of infinite height
and width 1 Å. Find the minimum energy of electron. 61

31 Normalized wave function of a particle is given:

ψ(x) = N exp

(
− x2

2a2
+ ikx

)
.

Find the expectation value of position. 62

32 Write the time-independent Schrödinger equation for a bouncing
ball. 63

33 Solve the Schrödinger equation for a step potential and calculate
the transmission and reflection coefficients for the case when the
kinetic energy of the particle E0 is greater than the potential energy
V (i.e., E0 > V ). 64

34 Calculate the lowest energy of an electron confined to move in a
1-dimensional potential well of width 10 nm. 67

35 Using Schrödinger Equation to Obtain Eigen-functions and Eigen-
values for a 1-Dimensional Harmonic Oscillator. Sketch the proles
of eigenfunc ons for rst three energy states. 69

36 Calculate the probability of transmission of an electron of 1.0 eV
energy through a potential barrier of 4.0 eV and 0.1 nm width. 73

37 The wave function of a particle is given as ψ(x) = 1√
a
e−|x|/a. Find

the probability of locating the particle in the range −a ≤ x ≤ a. 74

38 Calculate the zero-point energy of a system consisting of a mass of
10−3 kg connected to a fixed point by a spring which is stretched
by 10−2 m by a force of 10−1 N. The system is constrained to move
only in one direction. 76

5



A/P

39 The general wave function of harmonic oscillator (one-dimensional)
are of the form 77

40 Which of the following functions is/are acceptable solution(s) of
the Schrödinger equation? 79

41 A beam of particles of energy 9 eV is incident on a potential step
8 eV high from the left. What percentage of particles will reflect
back? 81

42 Estimate the size of hydrogen atom and the ground state energy
from the uncertainty principle. 83

43 Write down the Hamiltonian operator for a linear harmonic oscil-
lator. Show that the energy eigenvalue of the same can be given
by En =

(
n+ 1

2

)
ℏω0 at energy state n with ω0 being the natural fre-

quency of vibration of the linear oscillator. Prove that n = 0 energy
state has a wave function of typical Gaussian form. 85

44 Prove that Bohr hydrogen atom approaches classical conditions,
when n becomes very large and small quantum jumps are involved. 87

45 Find the probability current density for the wave function Ψ(x, t) =[
Aeipx/ℏ +Be−ipx/ℏ

]
e−ip

2t/2mℏ. Interpret the result physically. 89

46 A particle is described by the wave function Ψ(x) =
(
π
2

)−1/4
e−ax

2/2.
Calculate ∆x and ∆p for the particle, and verify the uncertainty
relation ∆x∆p = ℏ

2 . 92

47 A beam of 12eV electron is incident on a potential barrier of height
25eV and width 0.05 nm. Calculate the transmission coefficient. 94

48 Solve the Schrödinger equation for a step potential and calculate
the transmission and reflection coefficients for the case when the
kinetic energy of the particle E0 is greater than the potential energy
V (i.e., E0 > V ). 95

49 Write the wave functions for a particle on both sides of a step poten-
tial, for E > V0:

V (x) =

{
V0, x > 0

0, x < 0

Interpret the results physically. 98

50 Normalize the 1s state of the hydrogen atom in the ground state
and calculate the expectation value of position 100

51 Show that the Pauli spin matrices satisfy the following: 102

52 The normalized wave function for the electron in hydrogen atom for
the ground state is ψ(r) =

(
πa30
)−1/2

exp
(
−r
a0

)
where a0 is the radius

of the first Bohr orbit. Show that the most probable position of
the electron is a0. 104

6



A/P

53 Let σ⃗ be the vector operator with components equal to Paulis spin
matrices σx, σy, σz. If a⃗ and b⃗ are vectors in 3D space, prove the
identity (σ⃗ · a⃗)(σ⃗ · b⃗) = a⃗ · b⃗+ iσ⃗ · (⃗a× b⃗). 106

54 The normalized wave function for the electron in the ground state
of the hydrogen atom is given by ψ(r) = 1

(πa30)
1/2 e

−r/a0 where a0 is the
radius of the first Bohr orbit. Calculate ⟨r⟩ and

〈
1
r

〉
. 108

55 Using the definition L⃗ = r⃗ × p⃗ of the orbital angular momentum
operator, evaluate [Lx, Ly]. 110

56 Calculate the probability of finding the electron within a distance
r0 of the proton in the ground state. 112

57 If x̂ and p̂ are the position and momentum operators, prove the
commutation relation [p̂2, x̂] = −2iℏp̂ 114

58 Write down Pauli spin matrices. Express Jx, Jy, and Jz in terms of
Pauli spin matrices. 115

59 Using the commutation relations [x, px] = [y, py] = [z, pz] = iℏ, de-
duce the commutation relation between the components of angular
momentum operator L. 116

60 Solve the Schrödinger equation for a particle in a three-dimensional
rectangular potential barrier. Explain the terms degenerate and
non-degenerate states in this context. 118

61 A particle trapped in an infinitely deep square well of width a A
particle has a wave function:

ψ(x) =

(
2

a

)1/2

sin
(πx
a

)
The walls are suddenly separated by an infinite distance. Find the
probability of the particle having momentum between p and p+dp.121

62 Write down the matrix representation of the three Pauli matrices
σx, σy, and σz. Prove that these matrices satisfy the following
identities: 123

63 Calculate the density of states for an electron moving freely inside a
metal with the help of quantum mechanical Schrödingers equation
for free particle in a box. 126

64 Evaluate the most probable distance of the electron from nucleus of
a hydrogen atom in its 2P state. What is the probability of finding
the electron at this distance? 128

65 Explain why the square of the angular momentum L2 and only one
of the components (Lx, Ly, Lz) of L are regarded as constants of
motion. 130

66 Prove the following identities: 132

67 Show that En = ⟨V ⟩ in the stationary states of the hydrogen atom.135

7



A/P

68 Obtaining the Normalized Eigenvectors of σx and σy Matrices. 136

69 Show that En = ⟨V ⟩ in the stationary states of the hydrogen atom.138

70 Calculate the zero-point energy for a particle in an infinite potential
well for the following cases: (i) a 100 g ball confined on a 5 m long
line. (ii) an oxygen atom confined to a 2 × 10−1 m lattice. (iii) an
electron confined to a 10−10 m atom.
Why zero point energy is not important for macroscopic objects?
Comment. 139

8



A/P

1 Derive Bohr’s angular momentum quantization con-
dition in Bohr’s atomic model from the concept of de
Broglie waves. (2010)

Introduction: Bohr’s atomic model introduces the concept of quantized angular
momentum for electrons orbiting the nucleus. This concept is fundamentally linked
to the wave nature of electrons as described by de Broglie.

Solution: According to de Broglie, the wavelength of an electron is given by:

λ =
h

p

where h is Planck’s constant and p is the momentum of the electron.

r0.4

Nucleus

Radius r

Wavelength λ

Quantization of angular momentum

For an electron in a circular orbit of radius r, the circumference must be an integral
multiple of the de Broglie wavelength:

2πr = nλ

Substituting the de Broglie wavelength:

2πr = n
h

p

Since p = mv for an electron of mass m and velocity v:

2πr = n
h

mv

Rearranging for the angular momentum L:

L = mvr = n
h

2π

Thus, the angular momentum is quantized:

L = nℏ

where ℏ = h
2π .

Conclusion: Bohr’s quantization of angular momentum provides a fundamental
insight into the discrete nature of atomic energy levels, leading to the explanation
of atomic spectra.
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2 Calculate the wavelength of de Broglie waves associ-
ated with electrons accelerated through a potential
difference of 200 Volts. (2011)

Introduction: The concept of de Broglie wavelength states that a particle also
behaves as a wave, whose wavelength can be calculated when they are accelerated
by a known potential difference.

Solution: The kinetic energy gained by the electron is:

eV =
1

2
mv2

where e is the electron charge, V is the potential difference, m is the electron mass,
and v is the velocity.

Rearranging for v:

v =

√
2eV

m

The de Broglie wavelength is given by:

λ =
h

mv

Substituting v:
λ =

h

m
√

2eV
m

=
h√

2meV

Using h = 6.626× 10−34 Js, m = 9.109× 10−31 kg, and e = 1.602× 10−19 C:

λ =
6.626× 10−34

√
2× 9.109× 10−31 × 1.602× 10−19 × 200

λ ≈ 8.6× 10−12 meters

Conclusion: The wavelength of de Broglie waves associated with electrons accel-
erated through 200 Volts is approximately 8.6× 10−12 meters, which highlights the
wave nature of electrons at the atomic scale.
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3 Estimate the size of the hydrogen atom and the ground
state energy from the uncertainty principle. (2012)

Introduction: We aim to estimate the characteristic size of the hydrogen atom and
its ground state energy using Heisenberg’s uncertainty principle. We will model the
electron bound to the proton via Coulomb attraction, and apply quantum mechan-
ical uncertainty relations to find approximate expressions for both the radius and
the minimum energy of the electron in its ground state.

Given:

We estimate the electrons position uncertainty as the size of the atom r, and relate
the momentum uncertainty ∆p via the uncertainty relation ∆x∆p ∼ ℏ.

Solution:

From the uncertainty principle:

∆x∆p ∼ ℏ ⇒ ∆p ∼ ℏ
r

Assuming ∆p ∼ p, we estimate the kinetic energy as:

K ∼ p2

2me
∼ ℏ2

2mer2

The potential energy due to the Coulomb attraction between electron and proton
is:

U ∼ −kee
2

r

Hence, the total energy is approximately:

E(r) ∼ ℏ2

2mer2
− kee

2

r

To find the equilibrium (minimum energy), we differentiate E(r) with respect to r
and set to zero:

dE

dr
= − ℏ2

mer3
+
kee

2

r2
= 0

Solving:
ℏ2

mer3
=
kee

2

r2
⇒ r =

ℏ2

mekee2

Substituting values:

r =
(1.05× 10−34)2

(9.11× 10−31)(8.99× 109)(1.60× 10−19)2

Calculating:

r ≈ 1.10× 10−68

(9.11× 10−31)(8.99× 109)(2.56× 10−38)

≈ 1.10× 10−68

2.09× 10−58

≈ 5.26× 10−11 m
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This is approximately the Bohr radius.

Now substitute r back into E(r) to get the ground state energy:

E ≈ ℏ2

2mer2
− kee

2

r

Compute each term:

ℏ2

2mer2
≈ 1.10× 10−68

2 · 9.11× 10−31 · (5.26× 10−11)2
≈ 2.18× 10−18 J

kee
2

r
≈ 8.99× 109 · (1.60× 10−19)2

5.26× 10−11
≈ 4.36× 10−18 J

Thus,
E ≈ 2.18× 10−18 − 4.36× 10−18 = −2.18× 10−18 J

Convert to electronvolts:

E ≈ −2.18× 10−18 J
1.60× 10−19 J/eV

≈ −13.6 eV

Conclusion:

Using the uncertainty principle, we estimate:

• The size (radius) of the hydrogen atom: r ≈ 5.26× 10−11 m (Bohr radius)

• The ground state energy: E0 ≈ −13.6 eV

These estimates agree remarkably well with the results from the full quantum me-
chanical treatment of the hydrogen atom, illustrating the power of the uncertainty
principle in deriving fundamental atomic properties.
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4 Use the uncertainty principle to estimate the ground
state energy of a linear harmonic oscillator. (2012)

Introduction: The uncertainty principle, formulated by Werner Heisenberg, states
that two conjugate pair (which do not commute) in quantum mechanics can never
be precisely measured simultaneously. In this case it states that energy and time
cant be exactly determined simultaneously.

Solution: For a harmonic oscillator, the potential energy is given by:

V (x) =
1

2
kx2

The total energy E in the ground state is:

E =
p2

2m
+

1

2
kx2

Using the uncertainty principle ∆x∆p ≥ ℏ
2 , we set ∆p ≈ p and ∆x ≈ x:

x · p ≥ ℏ
2
⇒ p ≥ ℏ

2x

Substituting into the energy expression:

E ≥ (ℏ/2x)2

2m
+

1

2
kx2

Minimizing E with respect to x:

E =
ℏ2

8mx2
+

1

2
kx2

Setting the derivative dE
dx = 0:

− ℏ2

4mx3
+ kx = 0 ⇒ x4 =

ℏ2

4mk
⇒ x2 =

ℏ
2
√
mk

Substituting x2 back into E:

E =
ℏ2

8m · ℏ
2
√
mk

+
1

2
k · ℏ

2
√
mk

E =
ℏ
√
k/m

4
+

ℏ
√
k/m

4
=

ℏω
2

where ω =
√
k/m.

Conclusion: The ground state energy of a linear harmonic oscillator is ℏω
2 , demon-

strating the zero-point energy due to quantum fluctuations. Because of the
zero-point energy, the position and momentum of the oscillator in the ground state
are not fixed (as they would be in a classical oscillator), but have a small range of
variance, in accordance with the Heisenberg uncertainty principle.
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5 In a series of experiments on the determination of
the mass of a certain elementary particle, the results
showed a variation of ±20me, where me is the electron
mass. Estimate the lifetime of the particle. (2013)

Introduction: The uncertainty principle, formulated by Werner Heisenberg, states
that two conjugate pair(which do not commute) in quantum mechanics can never
be precisely measured simultaneously. In this case it states that energy and time
cant be exactly determined simultaneously.

Solution: Given the mass uncertainty ∆m = ±20me, where me is the electron
mass, we use the energy-time uncertainty principle:

∆E∆t ≥ ℏ
2

The energy uncertainty ∆E can be related to the mass uncertainty ∆m through
E = mc2:

∆E = ∆mc2

Substituting ∆m = 40me:
∆E = 40mec

2

Using the uncertainty principle:

40mec
2∆t ≥ ℏ

2

∆t ≥ ℏ
2 · 40mec2

∆t ≥ ℏ
80mec2

Given ℏ ≈ 1.054× 10−34 Js and mec
2 ≈ 8.187× 10−14 J:

∆t ≥ 1.054× 10−34

80× 8.187× 10−14

∆t ≥ 1.61× 10−23 s

Conclusion: The estimated lifetime of the particle, based on its mass uncertainty,
is 1.61×10−23 s. It decays via a week force into a nucleon and a pion which
highlights the precision required in high-energy physics experiments and
the stability of the Lambda particle.
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6 Find the de Broglie wavelength of neutron and elec-
tron with kinetic energy 500 eV. (2014)

Introduction: The de Broglie wavelength is a fundamental concept in quantum
mechanics, introduced by Louis de Broglie. It describes the wave-like behavior of
particles and is inversely proportional to their momentum.

Solution: For a particle, the de Broglie wavelength λ is given by:

λ =
h

p

where h is Planck’s constant and p is the momentum of the particle.

(i) A neutron with kinetic energy of 500 eV: The kinetic energy Ek is related
to the momentum p by:

Ek =
p2

2m

Solving for p:
p =

√
2mEk

Substituting Ek = 500 eV and 1 eV = 1.602× 10−19 J:

Ek = 500× 1.602× 10−19 J

p =
√

2× 1.675× 10−27 kg × 500× 1.602× 10−19 J

p =
√

2863.35× 10−46 kg · m/s

p ≈ 5.3× 10−22 kg · m/s

The de Broglie wavelength is:

λ =
6.626× 10−34 Js

5.3× 10−22 kg · m/s

λ ≈ 1.28× 10−12 m

(ii) An electron with kinetic energy of 500 eV: The kinetic energy Ek is related
to the momentum p by:

Ek =
p2

2me

Solving for p:
p =

√
2meEk

Substituting Ek = 500 eV and 1 eV = 1.602× 10−19 J:

Ek = 500× 1.602× 10−19 J

p =
√

2× 9.11× 10−31 kg × 500× 1.602× 10−19 J

p =
√

1.457× 10−46 kg · m/s

p ≈ 1.21× 10−23 kg · m/s

The de Broglie wavelength is:

λ =
6.626× 10−34 Js

1.21× 10−23 kg · m/s

λ ≈ 5.48× 10−11 m
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Conclusion: The de Broglie wavelength of a neutron with kinetic energy of 500 eV is
approximately 1.28×10−12 m, while that of an electron with the same kinetic energy
is approximately 5.48×10−11 m. These results illustrate the wave-particle duality of
matter, with significant differences in wavelengths due to the mass disparity between
neutrons and electrons.
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7 The mean life of Lambda (Λ0) particle is 2.6× 10−10 s.
What will be the uncertainty in the determination of
its mass in eV? (2014)

Introduction: The uncertainty principle, formulated by Werner Heisenberg, states
that two conjugate pair (which do not commute) in quantum mechanics can never
be precisely measured simultaneously. In this case it states that energy and time
cant be exactly determined simultaneously

Solution: Given the mean life of Lambda particle (Λ0) is 2.6× 10−10 s, we use the
energy-time uncertainty principle:

∆E∆t ≥ ℏ
2

Rewriting in terms of mass uncertainty:

∆mc2 ·∆t ≥ ℏ
2

∆m ≥ ℏ
2c2∆t

Given ∆t = 2.6× 10−10 s, ℏ = 1.054× 10−34 Js, and c = 3× 108 m/s:

∆mc2 ≥ 1.054× 10−34

2× 2.6× 10−10

∆mc2 ≥ 1.054× 10−34

5.2× 10−10

∆E ≥ 0.202× 10−24 J

Converting to energy using 1 eV = 1.602× 10−19 J:

∆E ≈ 0.202× 10−24

∆E ≈ 2.025× 10−25 J

∆E ≈ 2.025× 10−25

1.602× 10−19
eV

∆E ≈ 1.26× 10−6 eV

Conclusion: The uncertainty in the mass determination of the Lambda particle
is approximately 1.26 × 10−6 eV. It decays via a week force into a nucleon
and a pion which highlights the precision required in high-energy physics
experiments and the stability of the Lambda particle.
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8 Find the energy, momentum and wavelength of pho-
ton emitted by a hydrogen atom making a direct tran-
sition from an excited state with n = 10 to the ground
state. Also find the recoil speed of the hydrogen atom
in this process. (2016)

Introduction: Whenever an electron makes a transition from higher energy level
to lower energy level it radiates energy in forms of quanta. The transited photon
had a momentum and corresponding wavelenght assosiated with it.

Solution: For an electron transitioning from n = 10 to the ground state (n = 1),
the energy difference is given by:

En = −13.6
1

n2
eV

The energy of the photon emitted:

∆E = E1 − E10

E1 = −13.6 eV, E10 = −13.6
1

102
= −0.136 eV

∆E = −0.136 eV − (−13.6 eV)

∆E = 13.464 eV

The wavelength λ of the emitted photon:

E =
hc

λ

λ =
hc

∆E

Given h = 6.626× 10−34 Js, c = 3× 108 m/s, and ∆E = 13.464× 1.602× 10−19 J:

λ =
6.626× 10−34 × 3× 108

13.464× 1.602× 10−19

λ ≈ 9.13× 10−8 m ≈ 91.3 nm

To find the recoil speed vr of the hydrogen atom:

p =
E

c
=

13.464× 1.602× 10−19

3× 108
≈ 7.19× 10−27 kg · m/s

Using momentum conservation, p =Mvr:

vr =
p

M

Given M ≈ 1.67× 10−27 kg:

vr =
7.19× 10−27

1.67× 10−27

vr ≈ 4.3m/s

Conclusion: The photon emitted in the hydrogen atom transition has a wavelength
of 91.3 nm, and the recoil speed of the hydrogen atom is approximately 4.3m/s.
These results illustrate the principles of energy quantization and con-
servation in atomic transitions, with applications in spectroscopy and
quantum mechanics.
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9 An electron is confined to move between two rigid
walls separated by 10−9 m. Compute the de Broglie
wavelengths representing the first three allowed en-
ergy states of the electron and the corresponding en-
ergies. (2016)

Introduction: The de Broglie wavelength is a fundamental concept in quantum
mechanics which describes the wave nature of particles. According to de Broglie’s
hypothesis, every moving particle or object has an associated wave. The wavelength
is inversely proportional to its momentum. This concept was historically pivotal in
the development of quantum mechanics.

Solution: To solve for the de Broglie wavelengths and the corresponding energies,
we will use the particle in a box model. Here, the electron is confined in a one-
dimensional potential well of width L = 10−9 m.

The energy levels for a particle in a box are given by:

En =
n2h2

8mL2

where: - n is the principal quantum number (1, 2, 3, . . . ), - h is Planck’s constant,
6.626× 10−34 Js, - m is the mass of the electron, 9.109× 10−31 kg, - L is the width
of the box.

Let’s compute the first three energy levels.

For n = 1:
E1 =

12 × (6.626× 10−34)2

8× 9.109× 10−31 × (10−9)2

E1 =
6.6262 × 10−68

8× 9.109× 10−31 × 10−18

E1 =
43.95× 10−68

7.287× 10−48

E1 = 6.03× 10−20 J

For n = 2:
E2 =

4× (6.626× 10−34)2

8× 9.109× 10−31 × (10−9)2

E2 = 4× E1

E2 = 4× 6.03× 10−20

E2 = 2.41× 10−19 J

For n = 3:
E3 =

9× (6.626× 10−34)2

8× 9.109× 10−31 × (10−9)2

E3 = 9× E1

E3 = 9× 6.03× 10−20

E3 = 5.43× 10−19 J
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Now, the de Broglie wavelength is given by:

λn =
h

pn

where pn is the momentum of the electron in the n-th energy state. For a particle
in a box, the momentum is given by:

pn =
√
2mEn

So, for the first three states: For n = 1:

p1 =
√
2× 9.109× 10−31 × 6.03× 10−20

p1 = 3.3× 10−25 kg m/s

λ1 =
6.626× 10−34

3.3× 10−25

λ1 = 2.007× 10−9 m

For n = 2:
p2 =

√
2× 9.109× 10−31 × 2.41× 10−19

p2 =
√
4.38× 10−49

p2 = 6.6× 10−25 kg m/s

λ2 =
6.626× 10−34

6.6× 10−25

λ2 = 10−9 m

For n = 3:
p3 =

√
2× 9.109× 10−31 × 5.43× 10−19

p3 =
√
9.89× 10−49

p3 = 9.94× 10−25 kg m/s

λ3 =
6.626× 10−34

9.94× 10−25

λ3 = 6.66× 10−10 m
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Wavefunctions and Energy Levels:

0 0.5 1

−1

0

1

ψ1

ψ2

ψ3

x/L

ψ
n
(x
)

ψ1

ψ2

ψ3

Figure 1: Wavefunctions for the first three energy states

E1

E4

E9

Energy Levels

Figure 2: Energy levels for the first three states

Conclusion: These values reflect the quantized nature of energy levels in a con-
fined system, significant in fields like quantum computing and semiconductor
physics.
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10 A typical atomic radius is about 5 × 10−15 m and
the energy of β-particle emitted from a nucleus is
at most of the order of 1 MeV. Prove on the basis
of uncertainty principle that the electrons are not
present in nuclei. (2016)

Introduction: The uncertainty principle, formulated by Werner Heisenberg, states
that two conjugate pair (which do not commute) in quantum mechanics can never
be precisely measured simultaneously. In this case it states that energy and time
cant be exactly determined simultaneously..

Solution:

The Heisenberg Uncertainty Principle is given by:

∆x ·∆p ≥ ℏ
2

where ∆x is the uncertainty in position and ∆p is the uncertainty in momentum.
Here, ℏ is the reduced Planck’s constant, ℏ = h

2π ≈ 1.055× 10−34 Js.

For an electron confined within a nucleus of radius R ≈ 5×10−15 m, the uncertainty
in position ∆x is approximately the size of the nucleus:

∆x ≈ 5× 10−15 m

The uncertainty in momentum ∆p can be found using the uncertainty principle:

∆p ≥ ℏ
2∆x

Substituting the values:

∆p ≥ 1.055× 10−34

2× 5× 10−15

∆p ≥ 1.055× 10−34

10× 10−15

∆p ≥ 1.055× 10−20 kg m/s

The kinetic energy E of an electron can be related to its momentum p by the non-
relativistic formula:

E =
p2

2m

where m is the mass of the electron, m ≈ 9.109× 10−31 kg. Using ∆p for p:

E ≥ (1.055× 10−20)2

2× 9.109× 10−31

E ≥ 1.113× 10−40

1.822× 10−30
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E ≥ 6.11× 10−11 J

Converting this energy into electron volts (1 eV = 1.602× 10−19 J):

E ≥ 6.11× 10−11

1.602× 10−19
eV

E ≥ 3.81× 108 eV

E ≥ 381 MeV

Conclusion: The minimum energy of an electron confined within a nucleus, ac-
cording to the uncertainty principle, is approximately 381 MeV. This is significantly
higher than the typical energy of β-particles emitted from a nucleus, which is about
1 MeV. Thus, electrons cannot be present in the nucleus as their confinement would
require them to possess unreasonably high energy, inconsistent with observed nuclear
phenomena.
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11 A beam 4.0 keV electrons from a source is incident
on a target 50.0 cm away. Find the radius of the
electron beam spot due to Heisenberg’s uncertainty
principle. (2017)

Introduction: The uncertainty principle, formulated by Werner Heisenberg, states
that the position and momentum of a particle cannot be simultaneously determined
with arbitrary precision. For an electron beam, this principle limits how tightly
the beam can be focused, leading to a minimum spot size on the target. And
additionally it could be interpreted as a beam of electrons which is moving along
a specified direction and it encounters a diaphragm with a slit and for that reason
electrons under go diffraction.

Solution:

Given:

• Energy of electrons, E = 4.0 keV = 4.0×103×1.602×10−19 J = 6.408×10−16 J

• Distance to target, L = 50.0 cm = 0.50 m

Verification: Check if non-relativistic approximation is valid

The electron velocity is:

v =
p

m
=

3.42× 10−23

9.109× 10−31
= 3.75× 107 m/s

Since v/c = 3.75 × 107/(3 × 108) = 0.125 < 0.3, the non-relativistic approximation
is reasonable.

For non-relativistic electrons, the kinetic energy E is related to momentum by:

E =
p2

2m

where m = 9.109× 10−31 kg is the electron mass.

Solving for momentum:
p =

√
2mE

Substituting values:

p =
√
2× 9.109× 10−31 × 6.408× 10−16

p =
√

1.167× 10−45 = 3.42× 10−23 kgm/s

The uncertainty principle states:

∆x ·∆p ≥ ℏ
2

where ℏ = 1.055× 10−34 Js.

For minimum uncertainty (equality case):

∆x =
ℏ

2∆p
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If the initial beam has an uncertainty in transverse position ∆x0, then by the uncer-
tainty principle, it must have a corresponding uncertainty in transverse momentum:

∆p⊥ ≥ ℏ
2∆x0

This transverse momentum uncertainty causes the beam to spread as it travels. The
angular divergence is:

θ ≈ ∆p⊥
p

=
ℏ

2∆x0 · p

As the beam travels distance L, the radius of the spot becomes:

r = ∆x0 + L · θ = ∆x0 + L · ℏ
2∆x0 · p

To minimize the spot size (as we want to ascertain the spot to be definite or you
might think the radius from center to the first minima of the diffraction pattern),
we differentiate with respect to ∆x0 and set equal to zero:

dr

d∆x0
= 1− Lℏ

2(∆x0)2p
= 0

This gives the optimal initial beam width:

∆x0 =

√
Lℏ
2p

The minimum spot radius is:

r = rmin = ∆x0 + L · θ = ∆x0 + L · ℏ
2∆x0 · p

rmin =

√
Lℏ
2p

+
Lℏ

2p ·
√

Lℏ
2p

=

√
Lℏ
2p

+

√
Lℏ
2p

= 2

√
Lℏ
2p

=

√
2Lℏ
p

Substituting the values:

rmin =

√
2Lℏ
p

=

√
2 · 0.50 · 1.055× 10−34

3.42× 10−23

=
√
3.08× 10−12

= 1.76× 10−6 m
≈ 1.8µm

25



A/P

Therefore:
rmin ≈ 1.8× 10−6 m = 1.8µm

Conclusion: The minimum radius of the electron beam spot on the target due
to Heisenberg’s uncertainty principle is approximately 1.8µm. This fundamental
quantum mechanical limit demonstrates why electron microscopes and other high-
precision electron beam instruments face ultimate resolution limits determined by
the uncertainty principle.
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12 Estimate the de Broglie wavelength of the electron
orbiting in the first excited state of the hydrogen
atom. (2017)

Introduction:

The de Broglie wavelength is a fundamental concept in quantum mechanics that
describes the wave-like behavior of particles. Introduced by Louis de Broglie in
1924, it posits that any moving particle has an associated wavelength given by
λ = h

p , where h is Planck’s constant and p is the particle’s momentum. This principle
bridges classical and quantum mechanics, highlighting the wave-particle duality of
matter.

Solution:

We can also determine the de Broglie wavelength of the electron using the energy of
the first excited state of the hydrogen atom. The total energy of an electron in the
n-th orbit is given by:

En = −13.6 eV
n2

For the first excited state (n = 2):

E2 = −13.6 eV
22

= −13.6 eV
4

= −3.4 eV

This energy is the sum of the kinetic and potential energies. In the Bohr model of
the hydrogen atom, the kinetic energy (K.E.) is equal to the negative of the total
energy:

K.E. = −E2 = 3.4 eV

To find the momentum p of the electron, we use the relation between kinetic energy
and momentum:

K.E. = p2

2m

Solving for p:
p =

√
2m · K.E.

Converting the kinetic energy to joules:

3.4 eV = 3.4× 1.602× 10−19 J = 5.447× 10−19 J

Now, substituting the mass of the electron m = 9.109× 10−31 kg:

p =
√

2 · 9.109× 10−31 kg · 5.447× 10−19 J

p =

√
9.919× 10−49 kg2 · m2 · s−2

p ≈ 9.96× 10−25 kg m/s

Finally, we calculate the de Broglie wavelength λ:

λ =
h

p
=

6.626× 10−34 Js
9.96× 10−25 kg m/s

λ ≈ 6.65× 10−10 m

λ ≈ 0.665nm
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Conclusion:

The de Broglie wavelength of the electron in the first excited state of the hydrogen
atom is approximately 0.665 nm. This wavelength reflects the wave-particle dual-
ity of the electron, emphasizing its quantum mechanical nature. Such insights are
crucial for understanding phenomena at atomic scales, including electron diffraction
and the formation of atomic spectra.
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13 Show that the mass and linear momentum of a quan-
tum mechanical particle can be given by m = h

λv and
p = h

λ, respectively, where h, λ and v are Planck’s
constant, wavelength, and velocity of the particle,
respectively. Comment on the wave-particle duality
from these relations. (2019)

Introduction:

The de Broglie hypothesis posits that every moving particle has an associated wave-
length, bridging the gap between classical and quantum physics. This hypothesis,
introduced by Louis de Broglie in 1924, demonstrates the wave-particle duality, a
cornerstone of quantum mechanics.

Solution:

To show the given relations, we start from the de Broglie wavelength formula. The
de Broglie wavelength λ is given by:

λ =
h

p

where h is Planck’s constant and p is the momentum of the particle.

1. Derivation of momentum: Given the de Broglie relation:

λ =
h

p

Solving for p:
p =

h

λ

2. Derivation of mass: We also know that momentum p is related to mass m and
velocity v by:

p = mv

Substituting p = h
λ from the de Broglie relation:

mv =
h

λ

Solving for m:
m =

h

λv

These derivations show that the mass and momentum of a quantum mechanical
particle can be expressed in terms of Planck’s constant, the particle’s wavelength,
and its velocity.

Comment on Wave-Particle Duality:

The derived relations m = h
λv and p = h

λ underscore the wave-particle duality
of matter. They reveal that the properties traditionally associated with particles
(mass and momentum) can be described using wave characteristics (wavelength).
This duality is fundamental in quantum mechanics, explaining phenomena such as
electron diffraction and the quantization of atomic orbits.

Conclusion:
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The expressions for mass and momentum derived from the de Broglie wavelength
highlight the intrinsic connection between wave and particle properties in quantum
mechanics. This wave-particle duality is crucial for understanding various quantum
phenomena and has practical applications in fields like electron microscopy and
semiconductor technology.
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14 State and express mathematically the three uncer-
tainty principles of Heisenberg. Highlight the phys-
ical significance of these principles in the develop-
ment of Quantum Mechanics. (2019)

Introduction:

The Heisenberg uncertainty principle is a fundamental concept in quantum mechan-
ics, formulated by Werner Heisenberg in 1927. It states that certain pairs of physical
properties, known as conjugate pairs, cannot both be known to arbitrary
precision simultaneously. This principle is mathematically expressed using the
commutator of these conjugate pairs, which is non-zero.

Solution:

Heisenberg’s uncertainty principle can be expressed mathematically for three differ-
ent pairs of conjugate variables:

1. Position and Momentum:

∆x∆p ≥ ℏ
2

The commutator for position x̂ and momentum p̂ is [x̂, p̂] = iℏ. Since this
commutator is not zero, it implies that position and momentum cannot be simulta-
neously determined with arbitrary precision.

2. Energy and Time:
∆E∆t ≥ ℏ

2

The commutator for energy Ê and time t̂ is [Ê, t̂] = iℏ. This non-zero
commutator signifies that energy and time cannot both be precisely measured at
the same time.

3. Angular Position and Angular Momentum:

∆θ∆L ≥ ℏ
2

The commutator for angular position θ̂ and angular momentum L̂ is
[θ̂, L̂] = iℏ. Again, the non-zero commutator indicates that angular position and
angular momentum cannot be simultaneously determined with arbitrary precision.

These inequalities show that increasing the precision in measuring one quantity leads
to increased uncertainty in the conjugate quantity.

Physical Significance:

The uncertainty principles have several significant implications:

1. Limits of Measurement: They set fundamental limits on the precision of mea-
surements, illustrating that there is a limit to how precisely we can simultaneously
know certain pairs of properties of a quantum system.

2. Wave-Particle Duality: These principles highlight the wave-particle duality of
matter, emphasizing that particles exhibit both wave-like and particle-like proper-
ties, depending on the measurement context.

3. Quantum Behavior: The principles help explain why atoms do not collapse,
as electrons cannot have both a well-defined position and momentum. This results
in stable atomic structures.
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4. Quantum Fluctuations: In fields such as quantum field theory, the energy-
time uncertainty principle is crucial for understanding quantum fluctuations and the
creation of particle-antiparticle pairs.

Conclusion:

Heisenberg’s uncertainty principles are cornerstones of quantum mechanics, funda-
mentally altering our understanding of measurement and the behavior of particles
at microscopic scales. They underscore the intrinsic limitations of classical concepts
when applied to quantum systems and have wide-ranging applications in technology
and theoretical physics, such as in the development of quantum computers and the
study of fundamental particles.
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15 For a free quantum mechanical particle under the
influence of a one-dimensional potential, show that
the energy is quantized in discrete fashion. How
do these energy values differ from those of a linear
harmonic oscillator? (2019)

Introduction:

Quantum mechanics reveals that particles can only occupy certain discrete energy
levels, a phenomenon known as quantization. This concept was developed in the
early 20th century by scientists like Planck, Bohr, and Schrödinger. Quantization
arises due to boundary conditions and the wave nature of particles.

Solution:

To show the quantization of energy, we consider a particle in a one-dimensional
potential well (infinite potential well) of width L.

The time-independent Schrödinger equation is:

− ℏ2

2m

d2ψ(x)

dx2
= Eψ(x)

For a particle in an infinite potential well, the potential V (x) is:

V (x) =

{
0 for 0 < x < L

∞ otherwise

Inside the well, the Schrödinger equation simplifies to:

d2ψ(x)

dx2
+

2mE

ℏ2
ψ(x) = 0

Let k2 = 2mE
ℏ2 , then:

d2ψ(x)

dx2
+ k2ψ(x) = 0

The general solution to this differential equation is:

ψ(x) = A sin(kx) +B cos(kx)

Applying boundary conditions ψ(0) = 0 and ψ(L) = 0: 1. At x = 0:

ψ(0) = A sin(0) +B cos(0) = B = 0

So, ψ(x) = A sin(kx).

2. At x = L:
ψ(L) = A sin(kL) = 0

Since A ̸= 0, we must have sin(kL) = 0.

Thus, kL = nπ, where n is an integer (n = 1, 2, 3, . . .).

So, k = nπ
L .

The energy levels are given by:

En =
ℏ2k2

2m
=

ℏ2

2m

(nπ
L

)2
=
n2π2ℏ2

2mL2
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Hence, the energy is quantized and the allowed energies are:

En =
n2π2ℏ2

2mL2
for n = 1, 2, 3, . . .

Comparison with Linear Harmonic Oscillator:

For a linear harmonic oscillator, the energy levels are given by:

En =

(
n+

1

2

)
ℏω for n = 0, 1, 2, . . .

The key differences are:

1. The energy levels for the particle in a potential well are proportional to n2, while
for the harmonic oscillator they are proportional to n+ 1

2 .

2. The spacing between energy levels in the potential well increases with n, whereas
for the harmonic oscillator, the spacing between adjacent energy levels is constant
(ℏω)

3. There is no zero point energy in case of 1D infinite well as is the case with har-
monic oscillator.

4. There is fixed boundary condition in case of infinite well i.e 0 to L but for har-
monic oscillator there is a restoring force but no fixed spatial boundary condition
due to which they have different energy level properties.

Conclusion:

The quantization of energy in a one-dimensional potential well demonstrates how
boundary conditions lead to discrete energy levels. This concept is foundational
in quantum mechanics, affecting phenomena like electron configurations in atoms
and the behavior of particles in confined spaces. The comparison with the linear
harmonic oscillator highlights the diversity in quantum systems, each with unique
energy quantization characteristics.
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16 Using the uncertainty principle ∆x∆p ≥ ℏ/2, esti-
mate the ground state energy of a harmonic oscilla-
tor. (2020)

Introduction: The uncertainty principle, formulated by Werner Heisenberg in
1927, states that it is impossible to simultaneously determine the exact position
and momentum of a particle. This principle is fundamental to quantum mechanics
and impacts the behavior of quantum systems such as the harmonic oscillator.

Solution:

The ground state energy of a harmonic oscillator can be estimated using the uncer-
tainty principle. For a harmonic oscillator, the potential energy V (x) = 1

2mω
2x2

and the kinetic energy T (p) = p2

2m .

Using the uncertainty principle ∆x∆p ≥ ℏ
2 :

∆p ≈ ℏ
2∆x

The total energy E is given by the sum of kinetic and potential energies. Assuming
∆x is of the order of the position uncertainty and ∆p is of the order of the momentum
uncertainty:

E ≈ (∆p)2

2m
+

1

2
mω2(∆x)2

Substituting ∆p:

E ≈
( ℏ
2∆x

)2
2m

+
1

2
mω2(∆x)2

E ≈ ℏ2

8m(∆x)2
+

1

2
mω2(∆x)2

Minimizing this energy with respect to ∆x, we set the derivative with respect to ∆x
to zero:

dE

d(∆x)
= − ℏ2

4m(∆x)3
+mω2(∆x) = 0

− ℏ2

4m(∆x)3
+mω2(∆x) = 0

ℏ2

4m2(∆x)4
= ω2

(∆x)4 =
ℏ2

4m2ω2

(∆x)2 =
ℏ

2mω
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∆x =

√
ℏ

2mω

Substituting back into the energy expression:

E ≈ ℏ2

8m

(
2mω

ℏ

)
+

1

2
mω2

(
ℏ

2mω

)

E ≈ ℏω
4

+
ℏω
4

=
ℏω
2

Thus, the ground state energy is:

E0 =
ℏω
2

Conclusion:

The uncertainty principle is crucial in understanding the limitations of measurements
at the quantum level. The calculated ground state energy of a harmonic oscillator
being ℏω

2 signifies the zero-point energy, indicating that even at absolute zero, the
oscillator retains quantum mechanical motion. This concept is widely applicable in
fields like quantum field theory and low-temperature physics.
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17 A blue lamp emits light of mean wavelength of 4500
Å. The rating of the lamp is 150 W and its 8% of
the energy appears as light. How many photons are
emitted per second by the lamp? (2020)

Introduction: Photon emission from light sources can be quantified using the
energy-wavelength relationship for photons. This relationship is fundamental in
quantum mechanics and is instrumental in understanding light sources.

Solution:

First, convert the wavelength from angstroms to meters:

λ = 4500Å = 4500× 10−10 m = 4.5× 10−7 m

The energy of one photon E is given by:

E =
hc

λ

where h is Planck’s constant (6.626×10−34 Js) and c is the speed of light (3×108 m/s).

E =
6.626× 10−34 × 3× 108

4.5× 10−7
=

19.878× 10−26

4.5× 10−7
= 4.417× 10−19 J

The power output of the lamp as light is 8% of 150W:

P = 0.08× 150 = 12W

The number of photons emitted per second N is given by:

N =
P

E
=

12

4.417× 10−19
= 2.717× 1019

Thus, the number of photons emitted per second by the lamp is:

N ≈ 2.72× 1019 photons/s

Conclusion:

Photon emission quantification allows for precise control and application in various
technologies such as lasers, LEDs, and other optical devices. The calculation of pho-
ton emission rate is crucial in designing efficient lighting systems and understanding
the energy efficiency of light sources.
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18 Consider a Hermitian operator A with property A3 =
1. Show that A = 1. (2020)

Introduction: Hermitian operators play a critical role in quantum mechanics, es-
pecially because their eigenvalues are real. The problem explores the properties of
a specific Hermitian operator.

Solution:

Given that A is a Hermitian operator, all its eigenvalues are real. Let λ be an
eigenvalue of A with an eigenvector |ψ⟩, i.e.,

A|ψ⟩ = λ|ψ⟩

Given A3 = 1,

A3|ψ⟩ = 1|ψ⟩

λ3|ψ⟩ = |ψ⟩

λ3 = 1

The real solutions to λ3 = 1 are λ = 1. Hence, the only eigenvalue of A is 1.

Since A is Hermitian and all its eigenvalues are 1, we can write:

A = I

Therefore,

A = 1

Conclusion:

Hermitian operators are fundamental in ensuring that measurements in quantum
mechanics yield real values. The result demonstrates the specific behavior of a Her-
mitian operator with a given property, reinforcing the concept that such operators
have real eigenvalues, which in this case leads to a unique solution. This concept
has applications in quantum computing and spectral theory.
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19 Find the uncertainty in the momentum of a particle
when its position is determined within 0.02 cm. Find
also the uncertainty in the velocity of an electron and
α-particle respectively when they are located within
15× 10−8cm. (2020)

Introduction:

The Heisenberg uncertainty principle states that it is impossible to simultaneously
determine the exact position and momentum of a particle. This principle is funda-
mental to quantum mechanics and provides limits on how precisely we can measure
these quantities.

Solution:

The uncertainty principle is given by:

∆x∆p ≥ ℏ
2

First, let’s find the uncertainty in momentum ∆p when the position ∆x = 0.02 cm =
0.02× 10−2 m.

∆p ≥ ℏ
2∆x

Using ℏ = 1.054× 10−34 Js,

∆p ≥ 1.054× 10−34

2× 0.02× 10−2
≈ 2.635× 10−32 kg m/s

Now, let’s find the uncertainty in velocity ∆v for an electron and an α-particle when
the position ∆x = 15× 10−8 cm = 15× 10−10 m.

For an electron with mass me = 9.11× 10−31 kg,

∆p ≥ ℏ
2∆x

=
1.054× 10−34

2× 15× 10−10
≈ 3.513× 10−26 kg m/s

∆ve ≥
∆p

me
=

3.513× 10−26

9.11× 10−31
≈ 3.86× 104 m/s

For an α-particle with mass mα = 4× 1.66× 10−27 kg = 6.64× 10−27 kg,

∆vα ≥ ∆p

mα
=

3.513× 10−26

6.64× 10−27
≈ 5.29× 100 m/s

Conclusion: The uncertainty in the momentum of a particle when its position is
determined within 0.02 cm is approximately 2.635 × 10−32 kg m/s. For an electron
and an α-particle located within 15 × 10−8 cm, the uncertainties in their velocities
are approximately 3.86 × 104 m/s and 5.29m/s, respectively. This illustrates the
significant impact of particle mass on the uncertainty in velocity, highlighting the
precision limitations inherent in quantum measurements.
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20 A particle of rest mass m0 has a kinetic energy K,
show that its de Broglie wavelength is given by λ =

hc√
K(K+2m0c2)

. Hence calculate the wavelength of an
electron of kinetic energy 2 MeV. What will be the
value of λ if K ≪ m0c

2? (2020)
Introduction: The de Broglie wavelength relates a particle’s momentum to its
wavelength, an essential concept in quantum mechanics introduced by Louis de
Broglie in 1924. This concept is pivotal in understanding wave-particle duality.

Solution:

The total energy E of a particle is given by:

E = K +m0c
2

The momentum p of the particle is related to its energy and mass by the relation:

E2 = (pc)2 + (m0c
2)2

Substituting E = K +m0c
2,

(K +m0c
2)2 = (pc)2 + (m0c

2)2

K2 + 2Km0c
2 + (m0c

2)2 = (pc)2 + (m0c
2)2

Subtracting (m0c
2)2 from both sides,

K2 + 2Km0c
2 = (pc)2

p =

√
K2 + 2Km0c2

c

The de Broglie wavelength λ is given by:

λ =
h

p
=

h√
K2+2Km0c2

c

=
hc√

K2 + 2Km0c2

Thus, the de Broglie wavelength is:

λ =
hc√

K(K + 2m0c2)

Next, let’s calculate the wavelength of an electron with kinetic energy K = 2MeV.

First, convert the kinetic energy to joules:

K = 2MeV = 2× 106 × 1.602× 10−13 J = 3.204× 10−13 J
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For an electron, m0 = 9.11× 10−31 kg and c = 3× 108 m/s.

Calculate m0c
2:

m0c
2 = 9.11× 10−31 × (3× 108)2 J = 8.2× 10−14 J

Now, calculate λ:

λ =
hc√

K(K + 2m0c2)

Using h = 6.626× 10−34 Js,

λ =
1.988× 10−25

√
3.204× 10−13 × 4.844× 10−13

λ =
1.988× 10−25

√
1.551× 10−25

λ =
1.988× 10−25

1.245× 10−12
≈ 1.597× 10−13 m

For K ≪ m0c
2, K + 2m0c

2 ≈ 2m0c
2,

λ =
hc√

K(2m0c2)
=

hc√
2Km0c2

λ ≈ h√
2m0K

× c

c
=

h√
2m0K

Conclusion: The derived expression for the de Broglie wavelength λ = hc√
K(K+2m0c2)

links a particle’s kinetic energy to its wavelength, emphasizing the relationship be-
tween energy, momentum, and wavelength in quantum mechanics.

For an electron with kinetic energy of 2 MeV, the wavelength is approximately
1.597 × 10−13 m. When K ≪ m0c

2, the wavelength simplifies to λ ≈ h√
2m0K

,
highlighting the classical limit of the de Broglie wavelength.

This relation is significant in analyzing particle behavior at quantum scales, with
applications in electron microscopy and particle physics.
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21 What is de Broglie concept of matter wave? Evalu-
ate de Broglie wavelength of Helium that is acceler-
ated through 300V. (Given mass of proton = mass
of neutron = 1.67× 10−27 kg)

Introduction: The de Broglie hypothesis, proposed by Louis de Broglie in 1924,
suggests that particles such as electrons have wave-like properties, characterized by
a wavelength. This concept is fundamental to quantum mechanics and leads to the
wave-particle duality of matter.

Solution:

The de Broglie wavelength λ of a particle is given by:

λ =
h

p

where h is Planck’s constant and p is the momentum of the particle.

For a particle accelerated through a potential difference V , the kinetic energy K
acquired by the particle is given by:

K = eV

where e is the elementary charge (1.602× 10−19 C).

The kinetic energy is also related to the momentum p by:

K =
p2

2m

Thus,

p =
√
2mK

Substituting K = eV ,

p =
√
2meV

Therefore, the de Broglie wavelength λ is:

λ =
h√

2meV

Given: h = 6.626 × 10−34 Js e = 1.602 × 10−19 C mHe = 4 × (1.67 × 10−27 kg) =
6.68× 10−27 kg V = 300V

Substitute these values into the equation:

λ =
6.626× 10−34

√
2× 6.68× 10−27 × 1.602× 10−19 × 300

Calculate the denominator:
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√
2× 6.68× 10−27 × 1.602× 10−19 × 300 =

√
6.434× 10−23 = 8.02× 10−12 kg m/s

Now calculate the wavelength:

λ =
6.626× 10−34

8.02× 10−12
≈ 8.26× 10−23 m

Conclusion: The de Broglie wavelength concept reveals that particles exhibit wave-
like behavior, which is fundamental to quantum mechanics. For Helium ions acceler-
ated through a potential difference of 300V, the calculated de Broglie wavelength is
approximately 8.26× 10−23 m. This demonstrates the wave-particle duality of mat-
ter, crucial in applications such as electron microscopy and quantum computing.
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22 Obtain an expression for the probability current for
the plane wave ψ(x, t) = exp[i(kx− ωt)]. Interpret
your result.

Introduction: In quantum mechanics, the probability current is a measure of the
flow of probability associated with the wave function. It is essential for understand-
ing the conservation of probability and the behavior of quantum particles.

Solution:

The probability current j(x, t) for a wave function ψ(x, t) is given by:

j(x, t) =
ℏ

2mi

(
ψ∗∂ψ

∂x
− ψ

∂ψ∗

∂x

)
For the plane wave ψ(x, t) = ei(kx−ωt),

The complex conjugate is:

ψ∗(x, t) = e−i(kx−ωt)

First, calculate ∂ψ
∂x :

∂ψ

∂x
=

∂

∂x
ei(kx−ωt) = ikei(kx−ωt) = ikψ

Next, calculate ∂ψ∗

∂x :

∂ψ∗

∂x
=

∂

∂x
e−i(kx−ωt) = −ike−i(kx−ωt) = −ikψ∗

Substitute these into the probability current expression:

j(x, t) =
ℏ

2mi
(ψ∗ikψ − ψ(−ikψ∗))

j(x, t) =
ℏ

2mi
(ikψ∗ψ + ikψψ∗)

j(x, t) =
ℏ

2mi

(
2ik|ψ|2

)
Since |ψ|2 = ψψ∗ = 1 for a plane wave,

j(x, t) =
ℏ

2mi
× 2ik =

ℏk
m

Conclusion: The probability current for a plane wave ψ(x, t) = exp[i(kx− ωt)] is
j = ℏk

m . This indicates a constant flow of probability in the direction of the wave
vector k, reflecting the uniform motion of the quantum particle. It highlights the
conservation of probability and provides insight into the dynamics of free particles
in quantum mechanics.
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23 A system is described by the Hamiltonian operator
H = − d2

dx2 + x2. Show that the function Ax exp
(
−x2

2

)
is an eigenfunction of H. Determine the eigenvalues
of H.

Introduction: In quantum mechanics, the Hamiltonian operator represents the
total energy of a system. Eigenfunctions of the Hamiltonian correspond to stationary
states with definite energy, and the associated eigenvalues represent the energy levels
of the system.

Solution:

Given the Hamiltonian:

H = − d2

dx2
+ x2

We need to show that the function ψ(x) = Ax exp
(
−x2

2

)
is an eigenfunction of H.

First, calculate dψ
dx :

ψ(x) = Ax exp

(
−x

2

2

)

dψ

dx
= A

(
exp

(
−x

2

2

)
+ x

(
−x exp

(
−x

2

2

)))
= A exp

(
−x

2

2

)
(1− x2)

Next, calculate d2ψ
dx2

:

d2ψ

dx2
= A

(
d

dx

[
exp

(
−x

2

2

)
(1− x2)

])

d2ψ

dx2
= A

(
−x exp

(
−x

2

2

)
(1− x2) + exp

(
−x

2

2

)
(−2x)

)

d2ψ

dx2
= A exp

(
−x

2

2

)(
−x+ x3 − 2x

)
= A exp

(
−x

2

2

)
(x3 − 3x)

Now, apply the Hamiltonian operator H to ψ(x):

Hψ(x) = −d
2ψ

dx2
+ x2ψ(x)

Substitute d2ψ
dx2

and ψ(x):

Hψ(x) = −A exp

(
−x

2

2

)
(x3 − 3x) + x2Ax exp

(
−x

2

2

)

Hψ(x) = −A exp

(
−x

2

2

)
(x3 − 3x) +Ax3 exp

(
−x

2

2

)
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Hψ(x) = A exp

(
−x

2

2

)
(−x3 + 3x+ x3)

Hψ(x) = 3Ax exp

(
−x

2

2

)
Thus,

Hψ(x) = 3ψ(x)

So, ψ(x) = Ax exp
(
−x2

2

)
is an eigenfunction of H with the eigenvalue λ = 3.

Conclusion: The function ψ(x) = Ax exp
(
−x2

2

)
is an eigenfunction of the Hamil-

tonian operator H = − d2

dx2
+x2 with the eigenvalue λ = 3. This shows that the sys-

tem described by H has a discrete energy level corresponding to this eigenfunction.
Eigenfunctions and eigenvalues are crucial in quantum mechanics for determining
the stationary states and energy levels of quantum systems.
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24 Solve the Schrödinger equation for a particle of mass
m in an infinite rectangular well defined by V (x) ={
0 ; 0 ≤ x ≤ L

∞ ; x < 0, x > L
Obtain the normalized eigenfunctions and the cor-
responding eigenvalues.

Introduction: The infinite potential well is a fundamental problem in quantum
mechanics, illustrating the quantization of energy levels. The Schrödinger equation
provides the basis for understanding the behavior of a particle in such a well.

Solution:

The time-independent Schrödinger equation is:

− ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x)

For 0 ≤ x ≤ L, V (x) = 0:

− ℏ2

2m

d2ψ(x)

dx2
= Eψ(x)

Rewriting:

d2ψ(x)

dx2
= −2mE

ℏ2
ψ(x)

Let k2 = 2mE
ℏ2 :

d2ψ(x)

dx2
= −k2ψ(x)

The general solution is:

ψ(x) = A sin(kx) +B cos(kx)

Applying boundary conditions:

1. ψ(0) = 0:

ψ(0) = A sin(0) +B cos(0) = B = 0

So, ψ(x) = A sin(kx).

2. ψ(L) = 0:

ψ(L) = A sin(kL) = 0

For a non-trivial solution (A ̸= 0):
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sin(kL) = 0

kL = nπ where n = 1, 2, 3, . . .

Thus,

k =
nπ

L

The corresponding energy eigenvalues are:

E =
ℏ2k2

2m
=

ℏ2

2m

(nπ
L

)2
=
n2π2ℏ2

2mL2

The normalized eigenfunctions are:

ψn(x) = A sin
(nπx
L

)
Normalization condition:

∫ L

0
|ψn(x)|2dx = 1

A2

∫ L

0
sin2

(nπx
L

)
dx = 1

Using
∫ L
0 sin2

(
nπx
L

)
dx = L

2 :

A2L

2
= 1

A2 =
2

L

A =

√
2

L

Thus, the normalized eigenfunctions are:

ψn(x) =

√
2

L
sin
(nπx
L

)
Conclusion: The solution to the Schrödinger equation for a particle in an infinite
potential well results in quantized energy levels given by En = n2π2ℏ2

2mL2 . The nor-
malized eigenfunctions are ψn(x) =

√
2
L sin

(
nπx
L

)
. This quantization arises due to

the boundary conditions imposed by the infinite potential, demonstrating the wave-
like nature of particles in confined systems. Such quantization is fundamental to
understanding atomic and molecular structures.
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25 Normalize the wave function ψ(x) = e−|x| sin(ax).
Introduction: Normalization of a wave function ensures that the total probability
of finding the particle within the entire space is 1. This process involves calculating
the normalization constant such that the integral of the probability density over all
space equals 1.

Solution:

The given wave function is:

ψ(x) = e−|x| sin(ax)

To normalize ψ(x), we must ensure that:

∫ ∞

−∞
|ψ(x)|2 dx = 1

Calculate |ψ(x)|2:

|ψ(x)|2 =
(
e−|x| sin(ax)

)2
= e−2|x| sin2(ax)

Now, integrate |ψ(x)|2 over all space:

∫ ∞

−∞
e−2|x| sin2(ax) dx

Since e−2|x| is an even function and sin2(ax) is an even function, the integrand is
even. Therefore, we can write:

∫ ∞

−∞
e−2|x| sin2(ax) dx = 2

∫ ∞

0
e−2x sin2(ax) dx

Using the identity sin2(ax) = 1−cos(2ax)
2 , the integral becomes:

2

∫ ∞

0
e−2x 1− cos(2ax)

2
dx =

∫ ∞

0
e−2x dx−

∫ ∞

0
e−2x cos(2ax) dx

First, solve
∫∞
0 e−2x dx:

∫ ∞

0
e−2x dx =

[
e−2x

−2

]∞
0

=
1

2

Next, solve
∫∞
0 e−2x cos(2ax) dx using the integral formula for exponential and trigono-

metric functions:

∫ ∞

0
e−bx cos(cx) dx =

b

b2 + c2

Here, b = 2 and c = 2a:
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∫ ∞

0
e−2x cos(2ax) dx =

2

4 + 4a2
=

2

4(1 + a2)
=

1

2(1 + a2)

Substitute these results back into the integral:

∫ ∞

−∞
e−2|x| sin2(ax) dx = 2

(
1

2
− 1

2(1 + a2)

)
= 1− 1

1 + a2
=

a2

1 + a2

To normalize ψ(x), multiply by the normalization constant N such that:

∫ ∞

−∞
|Nψ(x)|2 dx = 1

Thus,

|N |2
∫ ∞

−∞
e−2|x| sin2(ax) dx = 1

|N |2 a2

1 + a2
= 1

|N |2 = 1 + a2

a2

N =

√
1 + a2

a2
=

√
1 + a2

a

Therefore, the normalized wave function is:

ψ(x) =

√
1 + a2

a
e−|x| sin(ax)

Conclusion: The normalized wave function ψ(x) = e−|x| sin(ax) is ψ(x) =
√
1+a2

a e−|x| sin(ax).
Normalization ensures that the total probability of finding the particle within the
entire space is 1, which is a fundamental requirement in quantum mechanics.
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26 Consider the one-dimensional wavefunction ψ(x) =
Axe−kx, (0 ≤ x <∞; k > 0)
i. Calculate A so that ψ(x) is normalized.
ii. Using Schrödinger’s equation find the potential
V (x) and energy E for which ψ(x) is an eigenfunction.
(Assume that as x→ ∞, V (x) → 0).

Introduction: The given wavefunction ψ(x) = Axe−kx needs to be normalized and
used to find the potential V (x) and energy E for which ψ(x) is an eigenfunction
using the Schrödinger equation.

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

x

ψ
(x
)

Plot of the wave function ψ(x) = Axe−kx

ψ(x)

Figure 3: Plot of the wave function ψ(x) = Axe−kx

Solution:

i. Calculate A so that ψ(x) is normalized.

To normalize ψ(x), we require: ∫ ∞

0
|ψ(x)|2 dx = 1

First, calculate |ψ(x)|2:

|ψ(x)|2 = (Axe−kx)2 = A2x2e−2kx

Now, integrate and set it equal to 1:∫ ∞

0
A2x2e−2kx dx = 1

Using the integral: ∫ ∞

0
xne−ax dx =

n!

an+1
, a > 0

For n = 2 and a = 2k: ∫ ∞

0
x2e−2kx dx =

2!

(2k)3
=

2

8k3
=

1

4k3
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Therefore:
A2 · 1

4k3
= 1

Solving for A:
A2 = 4k3

A = 2k3/2

ii. Using Schrödinger’s equation find the potential V (x) and energy E for
which ψ(x) is an eigenfunction. (Assume that as x→ ∞, V (x) → 0).

The time-independent Schrödinger equation is:

− ℏ2

2m

d2ψ

dx2
+ V (x)ψ = Eψ

First, compute the first and second derivatives of ψ(x):

ψ(x) = 2k3/2xe−kx

dψ

dx
= 2k3/2

(
e−kx − kxe−kx

)
= 2k3/2e−kx(1− kx)

d2ψ

dx2
= 2k3/2

(
−ke−kx(1− kx)− ke−kx

)
= 2k3/2e−kx(k2x− 2k)

Substitute ψ and its second derivative into the Schrödinger equation:

− ℏ2

2m
2k3/2e−kx(k2x− 2k) + V (x)2k3/2xe−kx = E2k3/2xe−kx

Simplify:

− ℏ2

2m
2k3/2e−kxk(kx− 2) + V (x)2k3/2xe−kx = E2k3/2xe−kx

−ℏ2k5/2

m
e−kx(x− 2

k
) + V (x)2k3/2xe−kx = E2k3/2xe−kx

Divide through by 2k3/2e−kx:

−ℏ2k2

2m
(x− 2

k
) + V (x)x = Ex

Since this must hold for all x:

V (x)x = Ex+
ℏ2k2

2m
x− ℏ2k2

m

V (x)x = x

(
E +

ℏ2k2

2m

)
− ℏ2k2

m

Now, solve for V (x):

V (x) = E +
ℏ2k2

2m
− ℏ2k2

mx

Given that as x → ∞, V (x) → 0: To satisfy this condition, the constant term in
V (x) must be zero:

E +
ℏ2k2

2m
= 0
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This gives us:

E = −ℏ2k2

2m

Therefore, the potential V (x) becomes:

V (x) = −ℏ2k2

m

(
1

x

)

Conclusion: The normalization constantA is found to be 2k3/2. Using the Schrödinger
equation, the potential V (x) and energy E for which ψ(x) is an eigenfunction are
determined. The energy is E = −ℏ2k2

2m and the potential is V (x) = −ℏ2k2
m

(
1
x

)
.
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27 (a) Solve the radial part of the time-independent
Schrödinger equation for a hydrogen atom. Obtain
an expression for the energy eigenvalues.
(b) What is the degree of degeneracy of the energy
eigenvalues? What happens if the spin of the elec-
tron is taken into account?

(a) Introduction: The hydrogen atom problem is a classic problem in quantum
mechanics. It involves solving the Schrödinger equation for an electron bound to a
proton via the Coulomb potential. The solution provides the allowed energy levels
of the electron, explaining the discrete spectral lines of hydrogen.

Solution:

The time-independent Schrödinger equation is:

− ℏ2

2m
∇2ψ + V (r)ψ = Eψ

For the hydrogen atom, the potential V (r) is the Coulomb potential:

V (r) = − e2

4πϵ0r

We separate the wavefunction ψ into radial and angular parts:

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ)

The Laplacian in spherical coordinates is given by:

∇2ψ =
1

r2
∂

∂r

(
r2
∂R(r)

∂r

)
Y (θ, ϕ)

+
1

r2 sin θ

∂

∂θ

(
sin θ

∂Y (θ, ϕ)

∂θ

)
+

1

r2 sin2 θ

∂2Y (θ, ϕ)

∂ϕ2

Substituting this into the Schrödinger equation:

− ℏ2

2m

[
1

r2
∂

∂r

(
r2
∂R(r)

∂r

)
Y (θ, ϕ)

+
1

r2 sin θ

∂

∂θ

(
sin θ

∂Y (θ, ϕ)

∂θ

)
+

1

r2 sin2 θ

∂2Y (θ, ϕ)

∂ϕ2

]
− e2

4πϵ0r
R(r)Y (θ, ϕ) = ER(r)Y (θ, ϕ)

Divide through by R(r)Y (θ, ϕ):

− ℏ2

2m

[
1

R(r)

1

r2
∂

∂r

(
r2
∂R(r)

∂r

)
+

1

Y (θ, ϕ)

1

r2 sin θ

∂

∂θ

(
sin θ

∂Y (θ, ϕ)

∂θ

)
+

1

Y (θ, ϕ)

1

r2 sin2 θ

∂2Y (θ, ϕ)

∂ϕ2

]
− e2

4πϵ0r
= E
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Multiply through by 2m and r2 to separate variables:[
− ℏ2

2m

1

R(r)

d

dr

(
r2
dR(r)

∂r

)
− e2r2

4πϵ0ℏ2

]
=

[
1

Y (θ, ϕ) sin θ

∂

∂θ

(
sin θ

∂Y (θ, ϕ)

∂θ

)
+

1

Y (θ, ϕ) sin2 θ

∂2Y (θ, ϕ)

∂ϕ2

]
= −2mEr2

ℏ2

Since the left side is a function of r only and the right side is a function of θ and ϕ
only, both sides must be equal to a constant, which we denote as l(l + 1):

For the radial part:

− ℏ2

2m

1

R(r)

d

dr

(
r2
dR(r)

∂r

)
− e2r2

4πϵ0ℏ2
= l(l + 1)

Rewriting and simplifying:

d

dr

(
r2
dR(r)

∂r

)
+

[
2m

ℏ2

(
E +

e2

4πϵ0r

)
r2 − l(l + 1)

]
R(r) = 0

Introducing the substitution:

R(r) =
u(r)

r

We obtain:
d2u(r)

dr2
+

[
2m

ℏ2

(
E +

e2

4πϵ0r

)
− l(l + 1)

r2

]
u(r) = 0

To solve this equation, we introduce dimensionless variables:

ρ =
r

a0
, a0 =

4πϵ0ℏ2

me2

and let
ϵ =

Ea0
e2/4πϵ0

Substituting these into the radial equation, we get:

d2u(ρ)

dρ2
+

[
−1

ρ
+
l(l + 1)

ρ2
− ϵ

]
u(ρ) = 0

This is a standard equation. Thus, the energy eigenvalues are given by:

En = − me4

2ℏ2(4πϵ0)2
1

n2

where n is the principal quantum number.

Conclusion: The radial part of the Schrödinger equation for the hydrogen atom
yields energy eigenvalues given by En = − me4

2ℏ2(4πϵ0)2
1
n2 . These eigenvalues explain

the discrete energy levels observed in the hydrogen atom spectrum.

(b) Introduction: The energy levels of the hydrogen atom have a certain degree
of degeneracy due to the multiple quantum states that share the same energy.
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Solution:

The degree of degeneracy of the energy eigenvalues for a given principal quantum
number n is:

n−1∑
l=0

(2l + 1) = n2

This sum accounts for all possible values of the angular momentum quantum number
l and its corresponding magnetic quantum number m.

When the spin of the electron is taken into account, each spatial state can have two
possible spin states (spin-up and spin-down). Thus, the degeneracy is doubled:

2n2

Conclusion: The degree of degeneracy of the energy eigenvalues for the hydrogen
atom is n2. When electron spin is considered, this degeneracy increases to 2n2,
reflecting the two possible spin states for each spatial quantum state.
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28 Obtain the time-dependent Schrödinger equation for
a particle. Hence deduce the time-independent Schrödinger
equation.

Introduction:

The Schrödinger equation is fundamental to quantum mechanics, describing how
the quantum state of a physical system changes over time. This derivation starts
from basic principles, using the classical wave equation analogy and the principle
of energy conservation, to derive both the time-dependent and time-independent
Schrödinger equations.

Solution:

1. Derivation of the Time-Dependent Schrödinger Equation

We start with the classical wave equation for a free particle in one dimension. The
classical wave equation is given by:

∂2ψ

∂x2
=

1

v2
∂2ψ

∂t2

In quantum mechanics, the wavefunction ψ represents the probability amplitude,
and we need to incorporate the energy of the particle into the wave equation. The
total energy E of a particle is given by the sum of its kinetic and potential energies:

E = T + V

For a free particle (where the potential V = 0), the kinetic energy T is given by:

T =
p2

2m

where p is the momentum of the particle. In quantum mechanics, the momentum
operator p̂ is given by:

p̂ = −iℏ ∂
∂x

Thus, the kinetic energy operator T̂ becomes:

T̂ =
p̂2

2m
= − ℏ2

2m

∂2

∂x2

The total energy operator Ê acting on the wavefunction ψ gives:

Êψ = Eψ = iℏ
∂ψ

∂t

Combining these, we get the time-dependent Schrödinger equation for a free particle:

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
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When a potential V (x, t) is present, the Schrödinger equation generalizes to:

iℏ
∂ψ

∂t
=

(
− ℏ2

2m

∂2ψ

∂x2
+ V (x, t)ψ

)
This is the time-dependent Schrödinger equation.

2. Derivation of the Time-Independent Schrödinger Equation

To derive the time-independent Schrödinger equation, we assume the potential
V (x, t) = V (x) is time-independent, and seek solutions of the form:

ψ(x, t) = ϕ(x)T (t)

Substituting this into the time-dependent Schrödinger equation, we get:

iℏ
(
ϕ(x)

dT (t)

dt

)
=

(
− ℏ2

2m

d2ϕ(x)

dx2
+ V (x)ϕ(x)

)
T (t)

Dividing both sides by ϕ(x)T (t), we obtain:

iℏ
1

T (t)

dT (t)

dt
= − ℏ2

2m

1

ϕ(x)

d2ϕ(x)

dx2
+ V (x)

Since the left-hand side is a function of time only and the right-hand side is a function
of space only, both sides must be equal to a constant, which we denote by E. This
gives us two separate equations:

For the time part:

iℏ
dT (t)

dt
= ET (t)

Solving this differential equation, we get:

T (t) = e−iEt/ℏ

For the spatial part, we get the time-independent Schrödinger equation:

− ℏ2

2m

d2ϕ(x)

dx2
+ V (x)ϕ(x) = Eϕ(x)

Conclusion:

We have derived the time-dependent Schrödinger equation, which describes the evo-
lution of a quantum state over time. By assuming a separable solution and a time-
independent potential, we derived the time-independent Schrödinger equation, which
is used to find the stationary states of a quantum system. These equations are fun-
damental to quantum mechanics and are essential for understanding the behavior of
quantum systems.
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29 Solve the Schrödinger equation for a particle of mass
m confined in a one-dimensional potential well of the
form

V (x) =

{
0 ; 0 ≤ x ≤ L

∞ ; x < 0, x > L

Obtain the discrete energy values and the normal-
ized eigenfunctions.

Introduction: The problem of a particle in a one-dimensional potential well (also
known as an infinite potential well or "particle in a box") is a fundamental quantum
mechanics problem. It provides insight into the quantization of energy levels and
the behavior of particles in confined spaces.

Solution:

Solving to find the Schrödinger Equation in the Potential Well:

The time-independent Schrödinger equation is:

− ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x)

For the potential well defined by:

V (x) =

{
0 ; 0 ≤ x ≤ L

∞ ; x < 0, x > L

Within the well (0 ≤ x ≤ L), the potential V (x) = 0, so the Schrödinger equation
simplifies to:

− ℏ2

2m

d2ψ(x)

dx2
= Eψ(x)

Rearranging, we get:
d2ψ(x)

dx2
+

2mE

ℏ2
ψ(x) = 0

Let:

k =

√
2mE

ℏ2

The equation becomes:
d2ψ(x)

dx2
+ k2ψ(x) = 0

The general solution to this differential equation is:

ψ(x) = A sin(kx) +B cos(kx)

Checking for Boundary Conditions:

The boundary conditions are:

ψ(0) = 0 and ψ(L) = 0

59



A/P

Applying the boundary condition at x = 0:

ψ(0) = A sin(0) +B cos(0) = B = 0

Thus, the wave-function simplifies to:

ψ(x) = A sin(kx)

Applying the boundary condition at x = L:

ψ(L) = A sin(kL) = 0

For this equation to hold, sin(kL) must be zero, which implies:

kL = nπ where n = 1, 2, 3, . . .

Thus:
k =

nπ

L

Finding the Discrete Energy Values:

Substituting k back into the expression for energy E:

E =
ℏ2k2

2m
=

ℏ2

2m

(nπ
L

)2
=
n2π2ℏ2

2mL2

So, the discrete energy levels are:

En =
n2π2ℏ2

2mL2
where n = 1, 2, 3, . . .

Constructing Normalized Eigen-functions:

The wavefunction is given by:

ψn(x) = A sin
(nπx
L

)
To normalize ψn(x), we require:∫ L

0
|ψn(x)|2 dx = 1

Substituting ψn(x):

A2

∫ L

0
sin2

(nπx
L

)
dx = 1

Using the integral: ∫ L

0
sin2

(nπx
L

)
dx =

L

2

We get:

A2 · L
2
= 1 ⇒ A2 =

2

L
⇒ A =

√
2

L
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Thus, the normalized eigen-functions are:

ψn(x) =

√
2

L
sin
(nπx
L

)
Conclusion: For a particle in a one-dimensional infinite potential well, the energy
levels are quantized and given by En = n2π2ℏ2

2mL2 . The corresponding normalized
eigen-functions are ψn(x) =

√
2
L sin

(
nπx
L

)
, showing the wave nature of particles in

a confined space.

30 An electron is moving in a one-dimensional box of
infinite height and width 1 Å. Find the minimum
energy of electron.

Introduction: In quantum mechanics, a particle confined in a one-dimensional
box (infinite potential well) exhibits quantized energy levels. The minimum energy
corresponds to the ground state.

Solution:

For an electron in a one-dimensional box of width L = 1 Å = 1 × 10−10 m, the
energy levels are given by:

En =
n2π2ℏ2

2mL2

The minimum energy corresponds to the ground state (n = 1):

E1 =
π2ℏ2

2mL2

Substitute the values: - Planck’s constant ℏ = 1.0545718 × 10−34 J · s - Electron
mass m = 9.10938356× 10−31 kg - Width L = 1× 10−10 m

Calculating:

E1 =
π2(1.0545718× 10−34)2

2(9.10938356× 10−31)(1× 10−10)2

E1 ≈ 6.024× 10−18 J

To convert this energy into electronvolts (eV):

1 eV = 1.60218× 10−19 J

E1 ≈
6.024× 10−18

1.60218× 10−19
eV

E1 ≈ 37.6 eV

Conclusion: The minimum energy of an electron confined in a one-dimensional
box of width 1 Å is approximately 37.6 eV.
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31 Normalized wave function of a particle is given:

ψ(x) = N exp

(
− x2

2a2
+ ikx

)
.

Find the expectation value of position.
Introduction:
The expectation value of position ⟨x⟩ for a given wavefunction ψ(x) is defined as:

⟨x⟩ =
∫ ∞

−∞
x|ψ(x)|2 dx,

where |ψ(x)|2 = ψ∗(x)ψ(x) represents the probability density of the particle.

Solution:

Given:
ψ(x) = N exp

(
− x2

2a2
+ ikx

)
,

its complex conjugate is:

ψ∗(x) = N∗ exp

(
− x2

2a2
− ikx

)
.

Then the probability density becomes:

|ψ(x)|2 = ψ∗(x)ψ(x) = |N |2 exp
(
−x

2

a2

)
.

Note that
∣∣∣exp(− x2

2a2

)∣∣∣2 = exp
(
−x2

a2

)
since the argument is real, and |eikx|2 = 1

since k is real. Therefore:

Now compute the expectation value:

⟨x⟩ =
∫ ∞

−∞
x|ψ(x)|2 dx = |N |2

∫ ∞

−∞
x exp

(
−x

2

a2

)
dx.

Note that x exp
(
−x2

a2

)
is an odd function, and the limits of integration are symmetric

about zero. Therefore,
⟨x⟩ = 0.

Conclusion:
The expectation value of the position for the given wavefunction is zero. This result
reflects the symmetry of the probability distribution, which is centered about the
origin, indicating that the average position of the particle is at x = 0.
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32 Write the time-independent Schrödinger equation
for a bouncing ball.

Introduction:
In quantum mechanics, a bouncing ball can be modeled as a particle subject to a
gravitational potential. The potential energy increases linearly with height, similar
to the classical potential energy function in a gravitational field.

Solution:

For a bouncing ball, the potential energy V (z) is given by:

V (z) = mgz

where: - m is the mass of the ball, - g is the acceleration due to gravity, - z is the
height above the ground.

The time-independent Schrödinger equation is:

− ℏ2

2m

d2ψ(z)

dz2
+ V (z)ψ(z) = Eψ(z)

Substituting the potential V (z) = mgz, we get:

− ℏ2

2m

d2ψ(z)

dz2
+mgzψ(z) = Eψ(z)

Rewriting, we have:

− ℏ2

2m

d2ψ(z)

dz2
+mgzψ(z) = Eψ(z)

This is the time-independent Schrödinger equation for a particle in a linear potential,
representing a bouncing ball in a gravitational field.
z

Ground

Ball
mg

Conclusion:
The time-independent Schrödinger equation for a bouncing ball subject to a gravi-
tational potential is given by:

− ℏ2

2m

d2ψ(z)

dz2
+mgzψ(z) = Eψ(z)

This equation models the quantum behavior of a particle under the influence of
gravity, providing insight into the quantized energy levels and wavefunctions of a
bouncing ball in a gravitational field.
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33 Solve the Schrödinger equation for a step potential
and calculate the transmission and reflection coef-
ficients for the case when the kinetic energy of the
particle E0 is greater than the potential energy V
(i.e., E0 > V ).

Introduction:
The step potential is a fundamental problem in quantum mechanics that illustrates
the behavior of a particle encountering a sudden change in potential energy. This
problem is essential for understanding phenomena such as quantum tunneling and
reflection.

Consider a particle encountering a step potential:

V (x) =

{
0 for x < 0

V0 for x ≥ 0

Below is a diagram illustrating the step potential:

x

V (x)

V0

0

V0

Solution:

Consider a particle encountering a step potential:

V (x) =

{
0 for x < 0

V0 for x ≥ 0

The Schrödinger equation in regions where V (x) is constant is:

− ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x)

For x < 0 (Region I), where V (x) = 0:

− ℏ2

2m

d2ψ(x)

dx2
= E0ψ(x)

The general solution is:
ψI(x) = Aeik1x +Be−ik1x

where:

k1 =

√
2mE0

ℏ2
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For x ≥ 0 (Region II), where V (x) = V0:

− ℏ2

2m

d2ψ(x)

dx2
+ V0ψ(x) = E0ψ(x)

This simplifies to:
d2ψ(x)

dx2
= k22ψ(x)

where:

k2 =

√
2m(E0 − V0)

ℏ2

The general solution is:
ψII(x) = Ceik2x

Since we consider the particle coming from the left and moving to the right, there
will be no wave traveling to the left in Region II (D = 0):

ψII(x) = Ceik2x

Boundary Conditions:

At x = 0, the wavefunctions and their first derivatives must be continuous:

ψI(0) = ψII(0)

dψI
dx

∣∣∣∣
x=0

=
dψII
dx

∣∣∣∣
x=0

Applying these conditions:

1. Continuity of wavefunction:
A+B = C

2. Continuity of derivative:

ik1A− ik1B = ik2C

Solving these equations for A, B, and C:

From the first equation:
C = A+B

Substituting into the second equation:

ik1A− ik1B = ik2(A+B)

Rearranging:
k1A− k1B = k2A+ k2B

(k1 − k2)A = (k1 + k2)B

A

B
=
k1 + k2
k1 − k2
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Therefore, the reflection coefficient R is:

R =

∣∣∣∣BA
∣∣∣∣2 = ∣∣∣∣k1 − k2

k1 + k2

∣∣∣∣2
The transmission coefficient T is given by:

T =

∣∣∣∣CA
∣∣∣∣2 = ∣∣∣∣ 2k1

k1 + k2

∣∣∣∣2
Conclusion:
For a particle encountering a step potential with E0 > V0, the transmission and
reflection coefficients are given by:

R =

∣∣∣∣k1 − k2
k1 + k2

∣∣∣∣2 , T =

∣∣∣∣ 2k1
k1 + k2

∣∣∣∣2
These coefficients describe the probability of the particle being reflected or trans-
mitted at the potential step.

An application of the step potential is seen in the behavior of electrons in
semiconductor devices, where they encounter potential barriers at junc-
tions, leading to phenomena like tunneling and reflection that are crucial
for the operation of diodes and transistors.
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34 Calculate the lowest energy of an electron confined
to move in a 1-dimensional potential well of width
10 nm.

Introduction:
The problem of an electron confined in a one-dimensional potential well, also known
as a "particle in a box," demonstrates the concept of quantized energy levels in
quantum mechanics.

Below is a diagram illustrating the one-dimensional potential well:

x

V (x)

∞ ∞

Potential Well

V (x) = 0

0 10 nm

Solution:

For an electron in a one-dimensional box of width L = 10 nm = 10 × 10−9 m, the
energy levels are given by:

En =
n2π2ℏ2

2mL2

The normalized wave function is:

ψn(x) =

√
2

L
sin
(nπx
L

)
The lowest energy corresponds to the ground state (n = 1):

E1 =
π2ℏ2

2mL2

Substitute the values: - Planck’s constant ℏ = 1.0545718 × 10−34 J · s - Electron
mass m = 9.10938356× 10−31 kg - Width L = 10× 10−9 m

Calculating:

E1 =
π2(1.0545718× 10−34)2

2(9.10938356× 10−31)(10× 10−9)2

E1 ≈ 6.024× 10−20 J

To convert this energy into electronvolts (eV):

1 eV = 1.60218× 10−19 J

E1 ≈
6.024× 10−20

1.60218× 10−19
eV
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E1 ≈ 0.376 eV

Conclusion:
The lowest energy of an electron confined in a one-dimensional potential well of
width 10 nm is approximately 0.376 eV.

68



A/P

35 Using Schrödinger Equation to Obtain Eigen-functions
and Eigenvalues for a 1-Dimensional Harmonic Os-
cillator. Sketch the proles of eigenfunc ons for rst
three energy states.

Introduction:
The quantum harmonic oscillator is a fundamental model in quantum mechanics
that describes a particle subject to a restoring force proportional to its displacement
from equilibrium. This is represented by the potential energy function:

V (x) =
1

2
mω2x2

where m is the mass of the particle and ω is the angular frequency of the oscillator.
This potential is quadratic in x, making it an ideal system to illustrate quantized
energy levels and wavefunctions.

Below is a graph illustrating the potential V (x) of a harmonic oscillator:

−2 −1.5 −1 −0.5 0.5 1 1.5 2

0.5

1

1.5

2

x

V (x)

Potential of the Harmonic Oscillator

Solution:

The force acting on a particle executing linear harmonic oscillation is given by
Hooke’s law:

F = −kx

where x represents the displacement from the equilibrium position, and k is the force
constant. This linear relationship indicates that the force is always directed towards
the equilibrium position and its magnitude increases linearly with the displacement.

The corresponding potential energy function, V (x), associated with this force is
quadratic and is expressed as:

V (x) =
1

2
kx2

In terms of the mass m of the particle and the angular frequency ω, where ω =
√

k
m ,

the potential energy can be rewritten as:

V (x) =
1

2
mω2x2

The time-independent Schrödinger equation for a particle of mass m in this potential
is:

− ℏ2

2m

d2ψ(x)

dx2
+

1

2
mω2x2ψ(x) = Eψ(x)

69



A/P

Simplifying, we obtain:

d2ψ(x)

dx2
+

2m

ℏ2

(
E − 1

2
mω2x2

)
ψ(x) = 0

To simplify this equation, we introduce the dimensionless eigenvalue λ and the di-
mensionless variable ξ:

λ =
2E

ℏω

ξ =

√
mω

ℏ
x

Substituting these into the Schrödinger equation transforms it into:

d2ψ(ξ)

dξ2
+
(
λ− ξ2

)
ψ(ξ) = 0

This differential equation is known as the Hermite equation. The solutions to this
equation are the Hermite polynomials Hn(ξ). The eigenfunctions of the harmonic
oscillator are thus given by:

ψn(ξ) = AnHn(ξ)e
−ξ2/2

where An is the normalization constant. These polynomials satisfy the orthogonal-
ity condition and are well-suited to describe the quantum states of the harmonic
oscillator.

To solve the Hermite equation, we assume a power series solution:

ψ(ξ) = e−ξ
2/2

∞∑
n=0

anξ
n

Substituting this series into the differential equation and matching coefficients for
each power of ξ, we derive a recurrence relation for the coefficients an:

First, we compute the derivatives:

dψ(ξ)

dξ
= e−ξ

2/2

( ∞∑
n=0

annξ
n−1 − ξ

∞∑
n=0

anξ
n

)

= e−ξ
2/2

( ∞∑
n=1

annξ
n−1 − ξ

∞∑
n=0

anξ
n

)

= e−ξ
2/2

( ∞∑
n=1

annξ
n−1 −

∞∑
n=0

anξ
n+1

)

Then,

d2ψ(ξ)

dξ2
= e−ξ

2/2

( ∞∑
n=1

ann(n− 1)ξn−2 − 2ξ

∞∑
n=1

annξ
n−1 + ξ2

∞∑
n=0

anξ
n

)

= e−ξ
2/2

( ∞∑
n=2

ann(n− 1)ξn−2 − 2
∞∑
n=1

annξ
n +

∞∑
n=0

anξ
n+2

)
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Rewriting the Schrödinger equation:

e−ξ
2/2

( ∞∑
n=2

ann(n− 1)ξn−2 − 2

∞∑
n=1

annξ
n +

∞∑
n=0

anξ
n+2

)
+(λ−ξ2)e−ξ2/2

∞∑
n=0

anξ
n = 0

Grouping terms by the power of ξ:
∞∑
n=2

ann(n− 1)ξn−2 − 2

∞∑
n=1

annξ
n +

∞∑
n=0

anξ
n+2 + λ

∞∑
n=0

anξ
n −

∞∑
n=0

anξ
n+2 = 0

∞∑
n=0

(an+2(n+ 2)(n+ 1)− 2ann+ λan) ξ
n = 0

For the series to terminate, ensuring normalizable wavefunctions, λ must be an odd
integer:

λ = 2n+ 1

Thus, the quantized energy levels are given by:

En =

(
n+

1

2

)
ℏω

The corresponding normalized eigenfunctions are derived as follows:

The power series solution:

ψ(ξ) = e−ξ
2/2

∞∑
n=0

anξ
n

Substituting into the Schrödinger equation:

d2ψ(ξ)

dξ2
+ (λ− ξ2)ψ(ξ) = 0

The Hermite polynomials Hn(ξ) are defined as:

Hn(ξ) = (−1)neξ
2 dn

dξn

(
e−ξ

2
)

The normalized eigenfunctions are:

ψn(ξ) =

(
α√
π2nn!

)1/2

Hn(αξ)e
−α2ξ2/2

where α =
√

mω
ℏ .

Below are the plots of the first three eigenfunctions:
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First Three Eigenfunctions of the Harmonic Oscillator

ψ0(x)

ψ1(x)

ψ2(x)

Conclusion
(i) The peculiar point is the ground state wave function of simple harmonic oscillator
that is Gaussian in nature. This arises due to the unique boundary conditions of the
system. SHO is the only system for which equality of Heisenberg uncertainty
principle holds true (in ground state).
(ii) The derived energy eigenvalues En =

(
n+ 1

2

)
ℏω are quantized, meaning the

system can only occupy specific energy levels. This indicates discrete energy states
rather than a continuum.
(iii) Applications: Molecular Vibrations in Chemistry, where it explains the spectra
observed in infrared spectroscopy. In quantum field theory, it serves as the
basis for understanding particle behavior in potential wells and for modeling
quantized fields.
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36 Calculate the probability of transmission of an elec-
tron of 1.0 eV energy through a potential barrier of
4.0 eV and 0.1 nm width.

Introduction:. Here Quantum tunneling tunneling is taking place. Quantum tun-
neling occurs when particles pass through a barrier that they classically shouldn’t
be able to, due to their energy being lower than the potential of the barrier.

Solution:

The transmission probability T for a particle with energy E encountering a potential
barrier V of width a is given by:

T = exp (−2κa)

where:

κ =

√
2m(V − E)

ℏ2

Given:

• Energy E = 1.0 eV

• Potential V = 4.0 eV

• Width a = 0.1 nm = 0.1× 10−9 m

• Electron mass m = 9.10938356× 10−31 kg

• Planck’s constant ℏ = 1.0545718× 10−34 J · s

• 1 eV = 1.60218× 10−19 J

Calculate κ:

κ =

√
2× 9.10938356× 10−31 × (4.0− 1.0)× 1.60218× 10−19

(1.0545718× 10−34)2

κ ≈ 1.14× 1010 m−1

Calculate the transmission probability:

T = exp
(
−2× 1.14× 1010 × 0.1× 10−9

)
T = exp (−2× 1.14)

T ≈ exp(−2.28)

T ≈ 0.102

Conclusion: The probability of transmission of an electron with 1.0 eV energy
through a potential barrier of 4.0 eV and 0.1 nm width is approximately 0.102, il-
lustrating the quantum tunneling effect. Quantum tunneling is significant in various
applications such as in the operation of tunnel diodes and the process of nuclear
fusion in stars. This phenomenon also underpins the functionality of scanning
tunneling microscopes, which can image surfaces at the atomic level.
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E = 1.0 eV

V = 4.0 eV

Barrier Width = 0.1 nm

Figure 4: Potential Barrier Diagram

37 The wave function of a particle is given as ψ(x) =
1√
a
e−|x|/a. Find the probability of locating the particle

in the range −a ≤ x ≤ a.
Introduction: The wave function ψ(x) provides the probability amplitude for find-
ing a particle at position x. The probability of locating the particle in a specific range
is given by the integral of the square of the wave function over that range.

The general expression for the probability P of finding the particle in the range
x1 ≤ x ≤ x2 is given by:

P =

∫ x2

x1

|ψ(x)|2 dx

Solution: The probability P of finding the particle in the range −a ≤ x ≤ a is
given by:

P =

∫ a

−a
|ψ(x)|2 dx
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Given the wave function:
ψ(x) =

1√
a
e−|x|/a

The square of the wave function is:

|ψ(x)|2 =
(

1√
a
e−|x|/a

)2

=
1

a
e−2|x|/a

Thus, the probability is:
P =

∫ a

−a

1

a
e−2|x|/a dx

Since the wave function is symmetric about x = 0, we can simplify the integral:

P = 2

∫ a

0

1

a
e−2x/a dx

Evaluating the integral:

P = 2

[
−1

2
e−2x/a

]a
0

P = 2

[
−1

2
e−2a/a +

1

2

]
P = 2

[
−1

2
e−2 +

1

2

]
P = 1− e−2

Conclusion: The probability of locating the particle in the range −a ≤ x ≤ a is
1−e−2. This result illustrates how the wave function’s exponential decay affects the
probability distribution within a finite range.
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38 Calculate the zero-point energy of a system consist-
ing of a mass of 10−3 kg connected to a fixed point
by a spring which is stretched by 10−2 m by a force
of 10−1 N. The system is constrained to move only
in one direction.

Introduction:

Zero-point energy is the lowest possible energy that a quantum mechanical physical
system may have. It is the energy of the ground state of the system. In the case of a
harmonic oscillator, the zero-point energy is 1

2ℏω, where ω is the angular frequency
of the oscillator.

Solution:

First, we need to determine the spring constant k using Hooke’s Law:

F = kx

Given:

• Force, F = 10−1 N

• Displacement, x = 10−2 m

We solve for k:
k =

F

x
=

10−1

10−2
= 10N/m

Next, we find the angular frequency ω of the system:

ω =

√
k

m

Given:

• Mass, m = 10−3 kg

• Spring constant, k = 10 N/m

We solve for ω:

ω =

√
10

10−3
=

√
104 = 100 rad/s

The zero-point energy E0 of a quantum harmonic oscillator is given by:

E0 =
1

2
ℏω

Using the reduced Planck constant ℏ ≈ 1.054× 10−34 Js, we get:

E0 =
1

2
× 1.054× 10−34 × 100 = 5.27× 10−33 J

Conclusion:

The zero-point energy of the system is 5.27 × 10−33 J. This energy represents the
lowest energy state of the harmonic oscillator system, even at absolute zero temper-
ature. This concept is illustrates the inherent energy present in all quantum systems
due to the Heisenberg uncertainty principle.
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39 The general wave function of harmonic oscillator
(one-dimensional) are of the form

un(x) =
∞∑
k=0

aky
ke−y

2/2

with y =
√

mω
ℏ x, and coefficients ak are determined by recurrence relations

ak+2 =
2(k − n)

(k + 1)(k + 2)
ak

Corresponding energy levels are

En =

(
n+

1

2

)
ℏω

Discuss the parity of these wave functions. What happens, if the potential for x ≤ 0
is infinite (half harmonic oscillator)?

Introduction:

The general wave function of a one-dimensional harmonic oscillator is given by a
series solution involving Hermite polynomials. The parity of a wave function refers
to its behavior under spatial inversion, x→ −x.

Solution:

1. Wave Function and Recurrence Relation:

The wave function un(x) is expressed as a series involving the Hermite polynomials
Hn(y):

un(x) = Hn

(√
mω

ℏ
x

)
e−

mωx2

2ℏ

The coefficients ak in the series are determined by the recurrence relation:

ak+2 =
2(k − n)

(k + 1)(k + 2)
ak

2. Parity of Wave Functions:

The wave functions un(x) for the harmonic oscillator have definite parity:

un(−x) = (−1)nun(x)

This means:

• For even n: un(x) is an even function.

• For odd n: un(x) is an odd function.

This behavior is a result of the properties of the Hermite polynomials, which alter-
nate in parity.

3. Half Harmonic Oscillator:

If the potential is infinite for x ≤ 0, the wave function must vanish at x = 0:

un(0) = 0

For the half harmonic oscillator, this condition is satisfied only by the odd-parity
solutions:
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• Only wave functions with odd n are valid.

• These wave functions naturally vanish at x = 0, satisfying the boundary con-
dition.

Conclusion:

The wave functions of a harmonic oscillator exhibit definite parity, with even n
corresponding to even functions and odd n corresponding to odd functions. For a
half harmonic oscillator, where the potential is infinite for x ≤ 0, only the odd-
parity wave functions are valid, as they meet the boundary condition un(0) = 0.
This restriction reduces the number of allowed energy levels and changes the overall
behavior of the system.

78



A/P

40 Which of the following functions is/are acceptable
solution(s) of the Schrödinger equation?

• ψ(x) = Ae−ikx +Beikx

• ψ(x) = Ae−kx +Bekx

• ψ(x) = A sin 3kx+B cos 5kx

• ψ(x) = A sin 3kx+B sin 5kx

• ψ(x) = A tan kx

Introduction: This problem involves identifying which of the provided functions
are valid solutions to the time-independent Schrödinger equation (TISE) in one
dimension. A function qualifies as an acceptable solution if it satisfies the TISE:

d2ψ(x)

dx2
+

2mE

ℏ2
ψ(x) = 0

and is also physically admissible.

Criteria for Acceptability of a Wavefunction: A wavefunction ψ(x) is consid-
ered physically acceptable if it meets the following criteria:

1. It must be single-valued for all x.

2. It must be continuous and have continuous first derivatives.

3. It must be normalizable:
∫
|ψ(x)|2 dx <∞ over the domain.

4. It must be finite everywhere in the domain (no divergences).

5. It must satisfy the boundary conditions of the physical problem.

We analyze each function based on these criteria and whether it satisfies the TISE
for a given energy eigenvalue.

Solution:

1. ψ(x) = Ae−ikx +Beikx

This represents the general solution for a free particle with energy E = ℏ2k2
2m .

Although it is not normalizable over infinite space, it is commonly used in
scattering theory and considered acceptable as a formal solution.

Acceptable solution.

2. ψ(x) = Ae−kx +Bekx

Contains an exponentially growing term Bekx, which diverges as x → ∞,
violating the normalizability criterion. Acceptable only if B = 0 and x is
constrained, such as in bound state decaying wavefunctions.

Not acceptable in general form.

3. ψ(x) = A sin 3kx+B cos 5kx

This function is a linear combination of sine and cosine terms with different
wave numbers (and hence different energies). Such a superposition does not
satisfy a single-energy TISE.

Not acceptable as a single eigenfunction.
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4. ψ(x) = A sin 3kx+B sin 5kx

Similarly, this is a superposition of solutions with different wave numbers,
and thus different energies. It does not satisfy the TISE for a specific energy
eigenvalue.

Not acceptable as a single eigenfunction.

5. ψ(x) = A tan kx

The tangent function has singularities at x = (2n+1)π
2k , where it diverges. This

violates the finiteness and continuity requirements of acceptable wavefunctions.

Not acceptable solution.

Conclusion: The only acceptable solution among the provided options, from the
standpoint of the time-independent Schrödinger equation for a single energy eigen-
value, is:

• ψ(x) = Ae−ikx +Beikx

All others are disqualified due to non-normalizability, divergence, or being superpo-
sitions of different energy eigenfunctions.
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41 A beam of particles of energy 9 eV is incident on a
potential step 8 eV high from the left. What per-
centage of particles will reflect back?

Introduction:

In quantum mechanics, the reflection and transmission of particles at a potential
step is a fundamental problem. When a particle encounters a potential step, part
of the wave function is reflected, and part is transmitted. The reflection coefficient
(R) gives the probability of the particle being reflected.

Solution:

The energy of the incident particles is E = 9 eV, and the height of the potential step
is V0 = 8 eV. The reflection coefficient (R) is given by:

R =

(
k1 − k2
k1 + k2

)2

where k1 and k2 are the wave numbers of the particle in the regions before and after
the potential step, respectively.

The wave number k is related to the energy E and the potential V by:

k =

√
2m(E − V )

ℏ2

For the region before the potential step (E = 9 eV and V = 0 eV):

k1 =

√
2m(9 eV)

ℏ2

For the region after the potential step (E = 9 eV and V = 8 eV):

k2 =

√
2m(9 eV − 8 eV)

ℏ2
=

√
2m(1 eV)

ℏ2

The ratio of the wave numbers is:

k1
k2

=

√
9 eV√
1 eV

= 3

Substituting into the reflection coefficient formula:

R =

(
3− 1

3 + 1

)2

=

(
2

4

)2

=

(
1

2

)2

= 0.25

Therefore, the reflection percentage is:

R× 100% = 0.25× 100% = 25%

The following diagram illustrates the potential step and the wave function behavior:
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E = 9 eV

V0 = 8 eV

0
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Position
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Conclusion:

The reflection coefficient indicates that 25% of the particles will reflect back when a
beam of particles with energy 9 eV encounters a potential step of 8 eV. This result
highlights the wave nature of particles, where partial reflection and transmission
occur due to quantum mechanical effects.

Applications:

1. Tunneling in Semiconductors: Quantum tunneling is crucial in the operation
of semiconductor devices such as diodes and transistors.
2. Scanning Tunneling Microscopy (STM): STM relies on the quantum tun-
neling of electrons to image surfaces at the atomic level.
3. Nuclear Fusion: Quantum tunneling allows particles to overcome the Coulomb
barrier, facilitating nuclear reactions in stars and experimental fusion reactors.
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42 Estimate the size of hydrogen atom and the ground
state energy from the uncertainty principle.

Introduction: The problem requires an estimation of the characteristic size (Bohr
radius) and ground state energy of a hydrogen atom using the Heisenberg uncertainty
principle. The hydrogen atom consists of an electron bound to a proton via Coulomb
attraction. We aim to estimate:

• The approximate radius r of the hydrogen atom,

• The ground state energy E of the electron.

We assume a non-relativistic quantum mechanical model and apply the uncertainty
relation ∆x∆p ∼ ℏ.

Solution:

Let the electron be confined within a region of size r, so the uncertainty in position
is ∆x ∼ r. Then the uncertainty in momentum is:

∆p ∼ ℏ
r

order of magnitude is satisfied even when we don’t take 1/2 as a factor

The kinetic energy of the electron can be approximated using:

T ∼ (∆p)2

2m
=

ℏ2

2mr2
,

where m is the mass of the electron.

The potential energy due to Coulomb attraction between the proton and the electron
is:

V ∼ − e2

4πε0r
,

where e is the elementary charge and ε0 is the vacuum permittivity.

The total energy of the electron is approximately:

E(r) = T + V ∼ ℏ2

2mr2
− e2

4πε0r
.

To find the equilibrium (ground state), we minimize E(r) with respect to r:

dE

dr
= − ℏ2

mr3
+

e2

4πε0r2
= 0.

The second derivative greater than 0, confirms a minimum.

Solving for r:
ℏ2

mr3
=

e2

4πε0r2
⇒ r =

4πε0ℏ2

me2
.

This is the Bohr radius:

a0 =
4πε0ℏ2

me2
≈ 5.29× 10−11 m.

Substitute r = a0 into the expression for energy:

E =
ℏ2

2ma20
− e2

4πε0a0
.
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This gives the ground state energy:

E0 = −13.6 eV.

Conclusion: By applying the uncertainty principle, we estimate the size of the
hydrogen atom to be approximately a0 = 5.29 × 10−11 m, known as the Bohr ra-
dius. The ground state energy is approximately E0 = −13.6 eV, consistent with
experimental results and Bohr’s model.
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43 Write down the Hamiltonian operator for a linear
harmonic oscillator. Show that the energy eigen-
value of the same can be given by En =

(
n+ 1

2

)
ℏω0 at

energy state n with ω0 being the natural frequency
of vibration of the linear oscillator. Prove that n = 0
energy state has a wave function of typical Gaussian
form.

Introduction: The problem involves analyzing the quantum harmonic oscillator.
We are asked to:

• Write the Hamiltonian operator for a linear harmonic oscillator.

• Derive the energy eigenvalues, demonstrating the quantized form En =
(
n+ 1

2

)
ℏω0.

• Show that the ground state wavefunction (n = 0) has a Gaussian form.

Assumptions include a one-dimensional oscillator and standard canonical quantiza-
tion with position operator x̂ and momentum operator p̂ satisfying [x̂, p̂] = iℏ.

Solution:

The Hamiltonian for a one-dimensional quantum harmonic oscillator is

Ĥ =
p̂2

2m
+

1

2
mω2

0x̂
2.

This represents the total energy of the system the sum of kinetic and potential
energies in quantum mechanical form.

To simplify the problem and reveal its underlying algebraic structure, we introduce
ladder (creation and annihilation) operators:

â =

√
mω0

2ℏ

(
x̂+

i

mω0
p̂

)
,

â† =

√
mω0

2ℏ

(
x̂− i

mω0
p̂

)
.

These satisfy the commutation relation:

[â, â†] = 1.

Ladder operators provide an elegant way to analyze the harmonic oscillator because
they allow us to raise or lower the energy levels of the system in discrete steps,
corresponding to the quantized nature of energy in quantum mechanics.

In terms of these operators, the Hamiltonian becomes:

Ĥ = ℏω0

(
â†â+

1

2

)
.

The number operator is defined as n̂ = â†â, and its eigenstates |n⟩ satisfy:

n̂ |n⟩ = n |n⟩ , n = 0, 1, 2, . . .
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Hence, the energy eigenvalues are:

En = ℏω0

(
n+

1

2

)
.

This result shows that the energy levels are quantized and equally spaced, with a
minimum energy of 1

2ℏω0, known as the zero-point energy. This non-zero minimum
energy reflects the Heisenberg uncertainty principle: even in the ground state, the
particle cannot have both definite position and momentum.

Now consider the ground state |0⟩, which satisfies:

â |0⟩ = 0.

Using the coordinate representation, we have:

x̂ = x,

p̂ = −iℏ d
dx
.

Thus the annihilation operator becomes:

â =

√
mω0

2ℏ

(
x+

ℏ
mω0

d

dx

)
.

Apply â to the ground state wavefunction ψ0(x):

âψ0(x) = 0 ⇒
(
x+

ℏ
mω0

d

dx

)
ψ0(x) = 0.

Solving this differential equation:
dψ0

dx
= −mω0

ℏ
xψ0(x).

This is a separable differential equation. Integrating both sides:∫
1

ψ0
dψ0 = −mω0

ℏ

∫
x dx,

lnψ0 = −mω0

2ℏ
x2 + C,

ψ0(x) = Ae−
mω0
2ℏ x2 ,

where A = eC is the normalization constant.

To normalize, we impose:∫ ∞

−∞
|ψ0(x)|2dx = 1 ⇒ A =

(mω0

πℏ

)1/4
.

Conclusion: The Hamiltonian operator for a linear harmonic oscillator is Ĥ =
p̂2

2m + 1
2mω

2
0x̂

2. Its energy eigenvalues are quantized as En =
(
n+ 1

2

)
ℏω0, reflecting

the discrete and equally spaced energy levels characteristic of quantum oscillators.
The ground state (n = 0) wavefunction is of Gaussian form:

ψ0(x) =
(mω0

πℏ

)1/4
e−

mω0
2ℏ x2 .

This confirms both the quantized energy spectrum and the Gaussian nature of the
ground state in quantum harmonic oscillators. Moreover, excited states can be
generated by applying the creation operator repeatedly on the ground state.
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44 Prove that Bohr hydrogen atom approaches classical
conditions, when n becomes very large and small
quantum jumps are involved.

Introduction:

The correspondence principle, formulated by Niels Bohr, states that the behavior of
systems described by quantum mechanics replicates classical physics in the limit of
large quantum numbers. For the Bohr model of the hydrogen atom, this principle
can be demonstrated by showing that the energy levels become closely spaced and
the frequency of radiation approaches the classical orbital frequency as n becomes
very large.

Solution:

1. Energy Levels in Bohr Model:

The energy levels of a hydrogen atom in the Bohr model are given by:

En = −13.6 eV
n2

where n is the principal quantum number.

2. Frequency of Radiation:

When an electron transitions from a higher energy level ni to a lower energy level
nf , the frequency of the emitted photon is:

f =
Ei − Ef

h

Substituting the energy levels:

f =
−13.6 eV

n2
i

+ 13.6 eV
n2
f

h

Let ni = n and nf = n−∆n where ∆n is small compared to n. Then,

f =
13.6 eV
h

(
1

(n−∆n)2
− 1

n2

)
For large n and small ∆n, we can use the binomial approximation:

(n−∆n)2 ≈ n2 − 2n∆n

So,

1

(n−∆n)2
≈ 1

n2

(
1 +

2∆n

n

)
Therefore,

f ≈ 13.6 eV
h

(
1

n2
− 1

n2

(
1 +

2∆n

n

))
=

13.6 eV
h

2∆n

n3
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3. Classical Orbital Frequency:

The classical orbital frequency fclassical of an electron in the nth orbit is given by:

fclassical =
ω

2π
=

v

2πr

Using Bohr’s model, v = e2

2ϵ0h
1
n and r = 4πϵ0h2n2

e2m
, we get:

fclassical =

(
e2

2ϵ0h
1
n

)
2π
(
4πϵ0h2n2

e2m

) =
e4m

16π3ϵ20h
3

1

n3

4. Comparison and Conclusion:

For large n,

f ≈ 13.6 eV
h

2∆n

n3
= fclassical∆n

Thus, the frequency of the radiation approaches the classical orbital frequency when
the quantum number n is very large, confirming Bohr’s correspondence principle.

Conclusion:

As the quantum number n becomes very large, the energy levels of the Bohr hydro-
gen atom become closely spaced, and the frequency of emitted radiation for small
quantum jumps approaches the classical orbital frequency. This demonstrates that
the Bohr model converges to classical physics in the limit of large quantum num-
bers, highlighting the correspondence principle. Practical applications include un-
derstanding atomic spectra and transitions in high-energy physics and astrophysics.
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45 Find the probability current density for the wave
function Ψ(x, t) =

[
Aeipx/ℏ +Be−ipx/ℏ

]
e−ip

2t/2mℏ. Inter-
pret the result physically.

Introduction:

In quantum mechanics, the probability current density j(x, t) represents the flow of
probability associated with the wave function Ψ(x, t). It is defined as:

j(x, t) =
ℏ

2mi

(
Ψ∗∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

)
where Ψ∗ is the complex conjugate of Ψ.

Solution:

Given the wave function:

Ψ(x, t) =
[
Aeipx/ℏ +Be−ipx/ℏ

]
e−ip

2t/2mℏ

First, find the partial derivatives of Ψ and Ψ∗ with respect to x.

1. Partial Derivative of Ψ with Respect to x:

∂Ψ

∂x
=

∂

∂x

[(
Aeipx/ℏ +Be−ipx/ℏ

)
e−ip

2t/2mℏ
]

Since e−ip2t/2mℏ is a constant with respect to x:

∂Ψ

∂x
= e−ip

2t/2mℏ
[
∂

∂x

(
Aeipx/ℏ +Be−ipx/ℏ

)]

= e−ip
2t/2mℏ

[
ip

ℏ
Aeipx/ℏ − ip

ℏ
Be−ipx/ℏ

]

=
ip

ℏ
e−ip

2t/2mℏ
[
Aeipx/ℏ −Be−ipx/ℏ

]
2. Partial Derivative of Ψ∗ with Respect to x:

The complex conjugate of Ψ(x, t) is:

Ψ∗(x, t) =
[
A∗e−ipx/ℏ +B∗eipx/ℏ

]
eip

2t/2mℏ

∂Ψ∗

∂x
= eip

2t/2mℏ
[
∂

∂x

(
A∗e−ipx/ℏ +B∗eipx/ℏ

)]

= eip
2t/2mℏ

[
− ip

ℏ
A∗e−ipx/ℏ +

ip

ℏ
B∗eipx/ℏ

]

=
ip

ℏ
eip

2t/2mℏ
[
−A∗e−ipx/ℏ +B∗eipx/ℏ

]
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3. Probability Current Density:

Using the definition of j(x, t):

j(x, t) =
ℏ

2mi

(
Ψ∗∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

)
Substitute Ψ, Ψ∗, and their derivatives:

Ψ∗∂Ψ

∂x
=
[
A∗e−ipx/ℏ +B∗eipx/ℏ

]
eip

2t/2mℏ · ip
ℏ
e−ip

2t/2mℏ
[
Aeipx/ℏ −Be−ipx/ℏ

]

=
ip

ℏ

[
A∗e−ipx/ℏAeipx/ℏ −A∗e−ipx/ℏBe−ipx/ℏ +B∗eipx/ℏAeipx/ℏ −B∗eipx/ℏBe−ipx/ℏ

]

=
ip

ℏ

[
A∗A−A∗Be−2ipx/ℏ +B∗Ae2ipx/ℏ −B∗B

]
Similarly,

Ψ
∂Ψ∗

∂x
=
[
Aeipx/ℏ +Be−ipx/ℏ

]
e−ip

2t/2mℏ · ip
ℏ
eip

2t/2mℏ
[
−A∗e−ipx/ℏ +B∗eipx/ℏ

]

=
ip

ℏ

[
Aeipx/ℏ(−A∗e−ipx/ℏ) +Aeipx/ℏB∗eipx/ℏ +Be−ipx/ℏ(−A∗e−ipx/ℏ) +Be−ipx/ℏB∗eipx/ℏ

]

=
ip

ℏ

[
−AA∗ +AB∗e2ipx/ℏ −BA∗e−2ipx/ℏ +BB∗

]
Therefore, the probability current density is:

j(x, t) =
ℏ

2mi

[
ip

ℏ

(
A∗A−A∗Be−2ipx/ℏ +B∗Ae2ipx/ℏ −B∗B

)
− ip

ℏ

(
−AA∗ +AB∗e2ipx/ℏ −BA∗e−2ipx/ℏ +BB∗

)]

=
ℏ

2mi
· 2ip

ℏ
(A∗A−B∗B)

j(x, t) =
p

m
(A∗A−B∗B)

Conclusion:

The probability current density for the given wave function is:

j(x, t) =
p

m
(A∗A−B∗B)
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Interpretation:

This result indicates that the probability current density depends on the coefficients
A and B. If |A|2 = |B|2, the probability current density j(x, t) is zero, implying
no net flow of probability. If |A|2 ̸= |B|2, there is a net flow of probability in the
direction of the momentum p.

This reflects the physical interpretation that the probability current density repre-
sents the flow of probability for a particle described by the wave function Ψ(x, t).
The terms |A|2 and |B|2 represent the probabilities of the particle moving in posi-
tive and negative directions, respectively. The difference between these probabilities
determines the net flow of probability in the system.
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46 A particle is described by the wave function Ψ(x) =(
π
2

)−1/4
e−ax

2/2. Calculate ∆x and ∆p for the particle,
and verify the uncertainty relation ∆x∆p = ℏ

2 .
Introduction: The given wave function is a Gaussian:

Ψ(x) =
(π
2

)−1/4
e−ax

2/2,

where a > 0 is a real constant. We are asked to find the uncertainties ∆x and ∆p
and verify the Heisenberg uncertainty relation:

∆x∆p ≥ ℏ
2
.

To compute uncertainties, we need:

1. ∆x =
√
⟨x2⟩ − ⟨x⟩2,

2. ∆p =
√
⟨p2⟩ − ⟨p⟩2,

where ⟨x⟩ and ⟨p⟩ are expectation values of position and momentum, respectively.

Solution:

1. Expectation values:

Since Ψ(x) is an even function and complete integrand is odd function:

⟨x⟩ =
∫ ∞

−∞
x|Ψ(x)|2dx = 0.

For momentum, we use p̂ = −iℏ d
dx :

⟨p⟩ =
∫ ∞

−∞
Ψ∗(x)

(
−iℏ d

dx

)
Ψ(x)dx.

Since dΨ
dx = −axΨ(x):

⟨p⟩ =
∫ ∞

−∞
Ψ∗(x)(−iℏ)(−ax)Ψ(x)dx = iℏa

∫ ∞

−∞
x|Ψ(x)|2dx = 0,

because the integrand is odd.

2. Compute ⟨x2⟩:

|Ψ(x)|2 =
(π
2

)−1/2
e−ax

2
.

Then,
⟨x2⟩ =

∫ ∞

−∞
x2|Ψ(x)|2dx =

(π
2

)−1/2
∫ ∞

−∞
x2e−ax

2
dx.

Using the standard integral: ∫ ∞

−∞
x2e−ax

2
dx =

√
π

2a3/2
,

we get:

⟨x2⟩ =
(π
2

)−1/2
·

√
π

2a3/2
=

1

2a
.
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Thus,

∆x =
√
⟨x2⟩ =

√
1

2a
=

1√
2a
.

3. Compute ⟨p2⟩:

We calculate ⟨p2⟩ = ⟨−ℏ2 d2

dx2
⟩:

First, compute derivatives:

dΨ

dx
= −axΨ(x),

d2Ψ

dx2
= −aΨ(x)− ax(−ax)Ψ(x) = (−a+ a2x2)Ψ(x).

So:

⟨p2⟩ =
∫ ∞

−∞
Ψ∗(x)

(
−ℏ2

d2

dx2

)
Ψ(x)dx = −ℏ2

∫ ∞

−∞
|Ψ(x)|2(−a+ a2x2)dx.

⟨p2⟩ = ℏ2
∫ ∞

−∞
|Ψ(x)|2(a− a2x2)dx = ℏ2

(
a

∫ ∞

−∞
|Ψ(x)|2dx− a2

∫ ∞

−∞
x2|Ψ(x)|2dx

)
.

Using
∫
|Ψ(x)|2dx = 1 and ⟨x2⟩ = 1

2a :

⟨p2⟩ = ℏ2
(
a− a2 · 1

2a

)
= ℏ2

(
a− a

2

)
=
aℏ2

2
.

Therefore:

∆p =

√
aℏ2
2

=
ℏ
√
a√
2
.

4. Uncertainty product:

∆x∆p =
1√
2a

· ℏ
√
a√
2

=
ℏ
√
a√

2a ·
√
2
=

ℏ
√
a

2
√
a
=

ℏ
2
.

Conclusion: The uncertainties in position and momentum are:

∆x =
1√
2a
, ∆p =

ℏ
√
a√
2
,

and their product satisfies the Heisenberg uncertainty principle exactly:

∆x∆p =
ℏ
2
.

This confirms the wave function is a minimum uncertainty Gaussian state.
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47 A beam of 12eV electron is incident on a potential
barrier of height 25eV and width 0.05 nm. Calculate
the transmission coefficient.

Solution:

Given:

• Electron energy, E = 12 eV

• Barrier height, V0 = 25 eV

• Barrier width, a = 0.05nm = 5× 10−11 m

For a rectangular barrier with E < V0, the transmission coefficient is:

T =

[
1 +

V 2
0 sinh2(κa)

4E(V0 − E)

]−1

where

κ =

√
2m(V0 − E)

ℏ

Constants:

m = 9.11× 10−31 kg, ℏ = 1.055× 10−34 Js, 1 eV = 1.602× 10−19 J

Compute:

κ =

√
2 · 9.11× 10−31 · 13 · 1.602× 10−19

1.055× 10−34
=

√
3.785× 10−48

1.055× 10−34
≈ 6.15× 10−24

1.055× 10−34
≈ 5.83×1010 m−1

Now:
κa = 5.83× 1010 · 5× 10−11 = 2.915

sinh(κa) ≈ sinh(2.915) ≈ 9.18

Now plug into the full expression:

T =

[
1 +

(25)2 · (9.18)2

4 · 12 · 13

]−1

=

[
1 +

625 · 84.29
624

]−1

=

[
1 +

52681.25

624

]−1

≈ [1 + 84.42]−1

T ≈ 1

85.42
≈ 0.0117

Answer: The transmission coefficient is approximately 0.012 , meaning there is
about a 1.2% probability of the electron tunneling through the barrier.
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48 Solve the Schrödinger equation for a step potential
and calculate the transmission and reflection coef-
ficients for the case when the kinetic energy of the
particle E0 is greater than the potential energy V
(i.e., E0 > V ).

Introduction:
The step potential is a fundamental problem in quantum mechanics that illustrates
the behavior of a particle encountering a sudden change in potential energy. This
problem is essential for understanding phenomena such as quantum tunneling and
reflection.

Consider a particle encountering a step potential:

V (x) =

{
0 for x < 0

V0 for x ≥ 0

Below is a diagram illustrating the step potential:

x

V (x)

V0

0

V0

Solution:

Consider a particle encountering a step potential:

V (x) =

{
0 for x < 0

V0 for x ≥ 0

The Schrödinger equation in regions where V (x) is constant is:

− ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x)

For x < 0 (Region I), where V (x) = 0:

− ℏ2

2m

d2ψ(x)

dx2
= E0ψ(x)

The general solution is:
ψI(x) = Aeik1x +Be−ik1x

where:

k1 =

√
2mE0

ℏ2
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For x ≥ 0 (Region II), where V (x) = V0:

− ℏ2

2m

d2ψ(x)

dx2
+ V0ψ(x) = E0ψ(x)

This simplifies to:
d2ψ(x)

dx2
= k22ψ(x)

where:

k2 =

√
2m(E0 − V0)

ℏ2

The general solution is:
ψII(x) = Ceik2x

Since we consider the particle coming from the left and moving to the right, there
will be no wave traveling to the left in Region II (D = 0):

ψII(x) = Ceik2x

Boundary Conditions:

At x = 0, the wavefunctions and their first derivatives must be continuous:

ψI(0) = ψII(0)

dψI
dx

∣∣∣∣
x=0

=
dψII
dx

∣∣∣∣
x=0

Applying these conditions:

1. Continuity of wavefunction:
A+B = C

2. Continuity of derivative:

ik1A− ik1B = ik2C

Solving these equations for A, B, and C:

From the first equation:
C = A+B

Substituting into the second equation:

ik1A− ik1B = ik2(A+B)

Rearranging:
k1A− k1B = k2A+ k2B

(k1 − k2)A = (k1 + k2)B

A

B
=
k1 + k2
k1 − k2
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Therefore, the reflection coefficient R is:

R =

∣∣∣∣BA
∣∣∣∣2 = ∣∣∣∣k1 − k2

k1 + k2

∣∣∣∣2
To correctly compute the transmission coefficient T , we must account for the differ-
ence in group velocities across regions. This gives:

T =
k2
k1

∣∣∣∣CA
∣∣∣∣2 = 4k1k2

(k1 + k2)2

Conclusion:
For a particle encountering a step potential with E0 > V0, the reflection and trans-
mission coefficients are:

R =

∣∣∣∣k1 − k2
k1 + k2

∣∣∣∣2 , T =
4k1k2

(k1 + k2)2

These coefficients describe the probability of the particle being reflected or trans-
mitted at the potential step and obey the conservation law R+ T = 1.
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49 Write the wave functions for a particle on both sides
of a step potential, for E > V0:

V (x) =

{
V0, x > 0

0, x < 0

Interpret the results physically.
Introduction: This problem involves a quantum particle encountering a 1D step
potential. The potential energy function is piecewise constant, and the total energy
of the particle satisfies E > V0. Our goal is to determine the wavefunctions in
both regions and interpret the behavior of the particle, including any reflection or
transmission effects due to the step.

Solution:

The time-independent Schrödinger equation is given by:

− ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x).

We solve this separately in regions I (x < 0) and II (x > 0).

Region I: x < 0 (where V (x) = 0)

The Schrödinger equation becomes:

− ℏ2

2m

d2ψ

dx2
= Eψ,

which simplifies to:

d2ψ

dx2
+ k21ψ = 0, where k1 =

√
2mE

ℏ
.

General solution:
ψI(x) = Aeik1x +Be−ik1x.

Here, Aeik1x represents the incident wave, and Be−ik1x is the reflected wave.

Region II: x > 0 (where V (x) = V0)

The Schrödinger equation becomes:

− ℏ2

2m

d2ψ

dx2
+ V0ψ = Eψ ⇒ d2ψ

dx2
+ k22ψ = 0,

where

k2 =

√
2m(E − V0)

ℏ
.

General solution:
ψII(x) = Ceik2x.

We exclude the term De−ik2x because it would represent a wave incoming from
x→ ∞, which contradicts the physical setup of a wave incident from the left.

Boundary Conditions:
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Continuity of the wavefunction and its derivative at x = 0:

ψI(0) = ψII(0) ⇒ A+B = C,

ψ′
I(0) = ψ′

II(0) ⇒ ik1(A−B) = ik2C.

Solving this system:

A+B = C

k1(A−B) = k2(A+B)

Solving for B/A and C/A:

B

A
=
k1 − k2
k1 + k2

,

C

A
=

2k1
k1 + k2

.

Interpretation:

Even though the energy E > V0, the particle has a finite probability of being re-
flected. The reflection coefficient R and transmission coefficient T are given by:

R =

∣∣∣∣BA
∣∣∣∣2 = (k1 − k2

k1 + k2

)2

,

T =
k2
k1

∣∣∣∣CA
∣∣∣∣2 = 4k1k2

(k1 + k2)2
.

Note that R+ T = 1, as required by probability conservation.

Physically, even when the particle has enough energy to surpass the potential step,
there is a non-zero probability of reflection due to the abrupt change in potential, a
purely quantum mechanical phenomenon with no classical analog.

Conclusion: The wavefunctions in each region are:

ψI(x) = Aeik1x +Be−ik1x, x < 0,

ψII(x) = Ceik2x, x > 0.

Despite having energy E > V0, the particle experiences partial reflection and trans-
mission due to the discontinuity in potential. This highlights the wave nature of
particles in quantum mechanics and the non-classical behavior at potential bound-
aries.

99



A/P

50 Normalize the 1s state of the hydrogen atom in the
ground state and calculate the expectation value of
position

Introduction:

The hydrogen atom’s ground state (1s) wave function in spherical coordinates is
given by:

ψ100(r, θ, ϕ) =
1√
πa30

e−r/a0

where a0 = 4πε0ℏ2
me2

is the Bohr radius. This function includes both the radial and an-
gular dependence. For the 1s state, the angular dependence is constant: Y00 = 1√

4π
,

and hence we focus primarily on the radial part for normalization and expectation
value computations.

Our goal is to: 1. Normalize the wave function, and 2. Compute the expectation
value of the radial distance ⟨r⟩.

1. Normalization of the wave function:

The normalization condition in three dimensions is:∫
|ψ100(r, θ, ϕ)|2 d3r = 1

In spherical coordinates, this becomes:∫ 2π

0

∫ π

0

∫ ∞

0
|ψ100(r)|2 r2 sin θ dr dθ dϕ = 1

Substituting ψ100(r) = Ae−r/a0 , we write:∫ 2π

0
dϕ

∫ π

0
sin θ dθ

∫ ∞

0
|A|2e−2r/a0r2 dr = 1

Evaluating the angular integrals:∫ 2π

0
dϕ = 2π,

∫ π

0
sin θ dθ = 2

So the normalization condition becomes:

4π|A|2
∫ ∞

0
e−2r/a0r2 dr = 1

Using the standard integral:∫ ∞

0
r2e−2r/a0 dr =

(a0
2

)3
·
∫ ∞

0
x2e−xdx =

a30
8

· 2 =
a30
4

Hence:
4π|A|2 · a

3
0

4
= 1 ⇒ |A|2πa30 = 1 ⇒ |A| = 1√

πa30

So the normalized wave function is:

ψ100(r) =
1√
πa30

e−r/a0
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2. Expectation value of position ⟨r⟩:

The expectation value of the position is given by:

⟨r⟩ =
∫ 2π

0

∫ π

0

∫ ∞

0
ψ∗
100(r) r ψ100(r) r

2 sin θ dr dθ dϕ

Substitute the normalized wave function:

⟨r⟩ = 1

πa30

∫ 2π

0
dϕ

∫ π

0
sin θ dθ

∫ ∞

0
r3e−2r/a0 dr

Evaluate the angular integrals:∫ 2π

0
dϕ = 2π,

∫ π

0
sin θ dθ = 2

So:
⟨r⟩ = 2

a30

∫ ∞

0
r3e−2r/a0 dr

Using the standard integral:∫ ∞

0
r3e−2r/a0 dr =

6

(2/a0)4
=

3a40
4

Then:
⟨r⟩ = 2

a30
· 3a

4
0

4
=

3a0
2

Conclusion:

- The normalized wave function for the hydrogen atom in the 1s state is:

ψ100(r) =
1√
πa30

e−r/a0

- The expectation value of the radial distance in this state is:

⟨r⟩ = 3a0
2

This result shows that the average distance of the electron from the nucleus in the
ground state is 1.5 times the Bohr radius. This reflects the quantum mechanical
nature of the atom, where the electron does not orbit at a fixed radius but has a
spread-out probability distribution.
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51 Show that the Pauli spin matrices satisfy the follow-
ing:

1. σ2x = σ2y = σ2z = 1

2. σxσy = −σyσx = iσz

3. σyσz = −σzσy = iσx

4. σzσx = −σxσz = iσy

Introduction:

The Pauli spin matrices σx, σy, and σz are fundamental operators in quantum me-
chanics, particularly in the description of spin-12 particles. These matrices not only
obey specific algebraic properties but also play a critical role in the representation
of angular momentum in quantum mechanics. The matrices are defined as follows:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
Solution:

We need to verify that the following properties hold for the Pauli matrices:

1. σ2x = σ2y = σ2z = 1

2. σxσy = −σyσx = iσz

3. σyσz = −σzσy = iσx

4. σzσx = −σxσz = iσy

Step 1: Verify that σ2x = σ2y = σ2z = 1.

Calculate σ2x:

σ2x =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
= I

Similarly, calculate σ2y :

σ2y =

(
0 −i
i 0

)(
0 −i
i 0

)
=

(
1 0
0 1

)
= I

And calculate σ2z :

σ2z =

(
1 0
0 −1

)(
1 0
0 −1

)
=

(
1 0
0 1

)
= I

Thus, σ2x = σ2y = σ2z = I.

Step 2: Verify that σxσy = −σyσx = iσz.

Calculate σxσy:

σxσy =

(
0 1
1 0

)(
0 −i
i 0

)
=

(
i 0
0 −i

)
= iσz
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Now, calculate σyσx:

σyσx =

(
0 −i
i 0

)(
0 1
1 0

)
=

(
−i 0
0 i

)
= −iσz

This confirms that σxσy = −σyσx = iσz.

Step 3: Verify that σyσz = −σzσy = iσx.

Calculate σyσz:

σyσz =

(
0 −i
i 0

)(
1 0
0 −1

)
=

(
0 i
i 0

)
= iσx

Now, calculate σzσy:

σzσy =

(
1 0
0 −1

)(
0 −i
i 0

)
=

(
0 −i
−i 0

)
= −iσx

This confirms that σyσz = −σzσy = iσx.

Step 4: Verify that σzσx = −σxσz = iσy.

Calculate σzσx:

σzσx =

(
1 0
0 −1

)(
0 1
1 0

)
=

(
0 1
−1 0

)
= iσy

Now, calculate σxσz:

σxσz =

(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
= −iσy

This confirms that σzσx = −σxσz = iσy.

Conclusion:

These commutation and anti-commutation relations are crucial in understanding the
behavior of spin-12 systems and are widely applicable in various quantum systems.
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52 The normalized wave function for the electron in hy-
drogen atom for the ground state is ψ(r) =

(
πa30
)−1/2

exp
(
−r
a0

)
where a0 is the radius of the first Bohr orbit. Show
that the most probable position of the electron is a0.

Introduction:

In quantum mechanics, the probability density of finding a particle at a particular
position r is given by |ψ(r)|2. For a spherically symmetric system, the probability
of finding the electron in a thin shell of radius r and thickness dr is proportional
to |ψ(r)|2r2dr. The most probable position corresponds to the maximum of this
probability distribution.

Solution:

The given wave function for the ground state of the hydrogen atom is:

ψ(r) =
(
πa30
)−1/2

exp

(
−r
a0

)

The probability density in spherical coordinates is given by:

P (r) = |ψ(r)|2r2

First, calculate |ψ(r)|2:

|ψ(r)|2 =
(
πa30
)−1

exp

(
−2r

a0

)

The probability density becomes:

P (r) =
(
πa30
)−1

exp

(
−2r

a0

)
r2

To find the most probable position, we need to maximize P (r). This can be done
by taking the derivative of P (r) with respect to r and setting it to zero:

dP (r)

dr
= 0

Lets compute the derivative:

dP (r)

dr
=

d

dr

[(
πa30
)−1

r2 exp

(
−2r

a0

)]

Using the product rule:

dP (r)

dr
=
(
πa30
)−1

[
d

dr

(
r2
)
exp

(
−2r

a0

)
+ r2

d

dr

(
exp

(
−2r

a0

))]

First, compute the derivative of r2:

d

dr

(
r2
)
= 2r
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Next, compute the derivative of exp
(
−2r
a0

)
:

d

dr

(
exp

(
−2r

a0

))
= exp

(
−2r

a0

)(
−2

a0

)

Substituting these results back into the expression for dP (r)
dr :

dP (r)

dr
=
(
πa30
)−1

[
2r exp

(
−2r

a0

)
+ r2 exp

(
−2r

a0

)(
−2

a0

)]

Factor out exp
(
−2r
a0

)
:

dP (r)

dr
=
(
πa30
)−1

exp

(
−2r

a0

)[
2r − 2r2

a0

]

Set this expression equal to zero to find the maximum:

2r − 2r2

a0
= 0

Factor out 2r:
2r

(
1− r

a0

)
= 0

This gives two solutions:
r = 0 or r = a0

Since r = 0 corresponds to the nucleus where the probability is not maximum, the
most probable position is r = a0.

Conclusion:

The most probable position of the electron in the hydrogen atom’s ground state
is r = a0, which corresponds to the radius of the first Bohr orbit. This result is
consistent with the classical Bohr model of the atom, where the electron is most
likely to be found at this radius.
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53 Let σ⃗ be the vector operator with components equal
to Paulis spin matrices σx, σy, σz. If a⃗ and b⃗ are
vectors in 3D space, prove the identity (σ⃗ · a⃗)(σ⃗ · b⃗) =
a⃗ · b⃗+ iσ⃗ · (⃗a× b⃗).

Introduction:

The Pauli matrices are often used in quantum mechanics to describe spin-12 particles.
These matrices can be combined into a vector operator σ⃗ = (σx, σy, σz), where σx,
σy, and σz are the Pauli matrices. The goal is to prove the given identity, which
relates the product of two such operators to the dot product and cross product of
the vectors a⃗ and b⃗.

Solution:

The Pauli matrices are defined as:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

Let a⃗ = (ax, ay, az) and b⃗ = (bx, by, bz). The dot products are:

σ⃗ · a⃗ = axσx + ayσy + azσz

σ⃗ · b⃗ = bxσx + byσy + bzσz

We need to compute (σ⃗ · a⃗)(σ⃗ · b⃗):

(σ⃗ · a⃗)(σ⃗ · b⃗) = (axσx + ayσy + azσz)(bxσx + byσy + bzσz)

Expanding the product:

(σ⃗ · a⃗)(σ⃗ · b⃗) = axbxσ
2
x + axbyσxσy + axbzσxσz

+ aybxσyσx + aybyσ
2
y + aybzσyσz

+ azbxσzσx + azbyσzσy + azbzσ
2
z

Recall the following properties of the Pauli matrices:

σiσj = δijI + iϵijkσk

where δij is the Kronecker delta and ϵijk is the Levi-Civita symbol.

Using these properties:
σ2x = σ2y = σ2z = I

σxσy = iσz, σyσx = −iσz
σyσz = iσx, σzσy = −iσx
σzσx = iσy, σxσz = −iσy

Substituting these into the expanded expression:

(σ⃗·⃗a)(σ⃗·⃗b) = axbxI+aybyI+azbzI+i(axby−aybx)σz+i(aybz−azby)σx+i(azbx−axbz)σy
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This expression can be rewritten as:

(σ⃗ · a⃗)(σ⃗ · b⃗) = (⃗a · b⃗)I + iσ⃗ · (⃗a× b⃗)

Since I is the identity matrix, we can drop it:

(σ⃗ · a⃗)(σ⃗ · b⃗) = a⃗ · b⃗+ iσ⃗ · (⃗a× b⃗)

Conclusion:

The identity is proved, demonstrating that the product of two Pauli vector operators
can be expressed as the sum of the dot product and an imaginary term involving
the cross product. This result is significant in quantum mechanics, particularly in
the study of spin interactions.
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54 The normalized wave function for the electron in
the ground state of the hydrogen atom is given by
ψ(r) = 1

(πa30)
1/2e

−r/a0 where a0 is the radius of the first
Bohr orbit. Calculate ⟨r⟩ and

〈
1
r

〉
.

Introduction:

The expectation values ⟨r⟩ and
〈
1
r

〉
describe the average radial distance and the

average inverse radial distance of the electron, respectively. These expectation values
are important for understanding the quantum mechanical properties of the hydrogen
atom.

The expectation values can be calculated using the following integrals:

⟨r⟩ =
∫ ∞

0
r|ψ(r)|2r2 dr

〈
1

r

〉
=

∫ ∞

0

1

r
|ψ(r)|2r2 dr

Solution:

The given normalized wave function is:

ψ(r) =
1

(πa30)
1/2

e−r/a0

The corresponding probability density is:

|ψ(r)|2 = 1

πa30
e−2r/a0

1. Calculation of ⟨r⟩:

The expectation value is given by:

⟨r⟩ =
∫ ∞

0
r|ψ(r)|2r2 dr

Substituting the probability density:

⟨r⟩ =
∫ ∞

0
r · 1

πa30
e−2r/a0r2 dr

⟨r⟩ = 1

πa30

∫ ∞

0
r3e−2r/a0 dr

Let’s perform a substitution: let u = 2r
a0

, so du = 2
a0
dr, or equivalently, dr = a0

2 du.
Also, r = a0u

2 .

Substituting into the integral gives:

⟨r⟩ = 1

πa30

∫ ∞

0

(a0u
2

)3
· a0
2
e−u du
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⟨r⟩ = a40
4πa30

∫ ∞

0
u3e−u du

⟨r⟩ = a0
4π

∫ ∞

0
u3e−u du

The integral
∫∞
0 u3e−u du is a standard gamma function integral, Γ(4) = 3! = 6.

Thus:
⟨r⟩ = a0

4
× 6 =

3a0
2

So, the expectation value ⟨r⟩ is:

⟨r⟩ = 3a0
2

2. Calculation of
〈
1
r

〉
:

The expectation value is given by:〈
1

r

〉
=

∫ ∞

0

1

r
|ψ(r)|2r2 dr

Substituting the probability density:〈
1

r

〉
=

∫ ∞

0

1

r
· 1

πa30
e−2r/a0r2 dr

〈
1

r

〉
=

1

πa30

∫ ∞

0
re−2r/a0 dr

Using the same substitution as before: u = 2r
a0

, dr = a0
2 du, and r = a0u

2 :

〈
1

r

〉
=

1

πa30

∫ ∞

0

a0u

2
· a0
2
e−u du

〈
1

r

〉
=

a20
πa30

∫ ∞

0
ue−u du

The integral
∫∞
0 ue−u du is a standard gamma function integral, Γ(2) = 1! = 1.

Thus: 〈
1

r

〉
=

a20
πa30

× 1 =
1

a0

So, the expectation value
〈
1
r

〉
is: 〈

1

r

〉
=

1

a0

Conclusion:

The calculated expectation values for the radial distance and its inverse are ⟨r⟩ = 3a0
4

and
〈
1
r

〉
= 1

a0
. These results are consistent with the quantum mechanical description

of the hydrogen atom.
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55 Using the definition L⃗ = r⃗ × p⃗ of the orbital angular
momentum operator, evaluate [Lx, Ly].

Introduction:

The orbital angular momentum operator L⃗ is defined as L⃗ = r⃗ × p⃗, where r⃗ is the
position operator and p⃗ is the momentum operator. The components of the angular
momentum operator are given by:

Lx = ypz − zpy, Ly = zpx − xpz, and Lz = xpy − ypx.

We want to evaluate the commutator [Lx, Ly].

Solution:

Start with the definitions of Lx and Ly:

Lx = ypz − zpy, Ly = zpx − xpz.

The commutator is:

[Lx, Ly] = [ypz − zpy, zpx − xpz].

Expanding the commutator using the distributive property:

[Lx, Ly] = [ypz, zpx]− [ypz, xpz]− [zpy, zpx] + [zpy, xpz].

We will evaluate each of these commutators individually.

1. Evaluate [ypz, zpx]:

[ypz, zpx] = y[pz, z]px + [y, z]pzpx.

Since [y, z] = 0 (different components commute), we are left with:

[ypz, zpx] = y[pz, z]px.

The commutator [pz, z] = −iℏ, so:

[ypz, zpx] = −iℏypx.

2. Evaluate [ypz, xpz]:

[ypz, xpz] = [y, x]p2z + y[pz, x]pz.

Again, [y, x] = 0 (different components commute), and [pz, x] = 0, so:

[ypz, xpz] = 0.

3. Evaluate [zpy, zpx]:

[zpy, zpx] = z[py, z]px + [z, z]pypx.

Since [z, z] = 0 and [py, z] = 0 (different components commute), we get:

[zpy, zpx] = 0.
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4. Evaluate [zpy, xpz]:

[zpy, xpz] = [z, x]pypz + z[py, x]pz.

Since [z, x] = 0 and [py, x] = iℏ, we have:

[zpy, xpz] = iℏzpz.

Putting it all together:

[Lx, Ly] = −iℏypx + 0 + 0 + iℏzpz.

This can be rewritten as:

[Lx, Ly] = iℏ(zpz − ypx).

Notice that zpz − ypx is the expression for Lz. Therefore:

[Lx, Ly] = iℏLz.

Conclusion:

The commutator [Lx, Ly] is given by:

[Lx, Ly] = iℏLz .

This result is consistent with the standard commutation relations for the components
of angular momentum in quantum mechanics.
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56 Calculate the probability of finding the electron within
a distance r0 of the proton in the ground state.

Introduction:

The normalized wave function for an electron in the ground state of the hydrogen
atom is given by:

ψ(r) =
1√
πa30

e
− r

a0

where a0 is the Bohr radius, representing the most probable distance between the
electron and the nucleus in a hydrogen atom. The wave function ψ(r) describes the
quantum state of the electron in the hydrogen atom, and its square gives the
probability density of finding the electron at a distance r from the nu-
cleus. Wave Function Graph: The graph below illustrates the ground state wave
function ψ(r) as a function of distance r from the nucleus, showing an exponential
decay from the nucleus.

Solution:

The probability of finding the electron within a distance r0 from the proton is given
by the integral of the probability density function over the desired range:

P (r ≤ r0) =

∫ r0

0
|ψ(r)|2 4πr2 dr

Substitute the wave function ψ(r):

P (r ≤ r0) =

∫ r0

0

(
1√
πa30

e
− r

a0

)2

4πr2 dr

Simplifying, we get:
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P (r ≤ r0) =
4

a30

∫ r0

0
r2e

− 2r
a0 dr

Now, evaluate the integral using the formula for the integral of r2e−αr:

∫ r0

0
r2e

− 2r
a0 dr =

(
a30
8

)(
1− e

− 2r0
a0

(
1 +

2r0
a0

+
2r20
a20

))
Substitute this back to find the probability:

P (r ≤ r0) = 1− e
− 2r0

a0

(
1 +

2r0
a0

+
2r20
a20

)
Conclusion:

This probability distribution reflects the quantum mechanical nature of the electron
in the hydrogen atom, where there is a high probability of finding the electron close
to the nucleus, and this probability decreases as the distance increases. it
helps predict atomic behavior and electron interactions.
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57 If x̂ and p̂ are the position and momentum operators,
prove the commutation relation [p̂2, x̂] = −2iℏp̂

Introduction:

In quantum mechanics, the position (x̂) and momentum (p̂) operators are fundamen-
tal operators that follow specific commutation relations. The commutation relation
between these operators reflects the uncertainty principle, which states that the po-
sition and momentum of a particle cannot be precisely known simultaneously. One
of the important commutation relations involving these operators is [p̂2, x̂] = −2iℏp̂.

Solution:

To prove the commutation relation [p̂2, x̂] = −2iℏp̂, we start by using the basic
commutation relation between position and momentum operators:

[x̂, p̂] = iℏ

1. Consider the expression for the commutator [p̂2, x̂]:

[p̂2, x̂] = p̂[p̂, x̂] + [p̂, x̂]p̂

2. Substitute the known commutation relation [x̂, p̂] = iℏ, which gives:

[p̂, x̂] = −iℏ

Therefore,

[p̂2, x̂] = p̂(−iℏ) + (−iℏ)p̂

[p̂2, x̂] = −iℏp̂− iℏp̂

[p̂2, x̂] = −2iℏp̂

Conclusion:

The commutation relation [p̂2, x̂] = −2iℏp̂ demonstrates how the momentum op-
erator squared interacts with the position operator in quantum mechanics. This
relation highlights the non-commutative nature of quantum operators, which is a
key aspect of the uncertainty principle.
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58 Write down Pauli spin matrices. Express Jx, Jy, and
Jz in terms of Pauli spin matrices.

Introduction:

The Pauli spin matrices are a set of three 2 × 2 complex matrices that rep-
resent the spin operators for a spin-12 particle in quantum mechanics. They
are fundamental in describing the spin properties of particles such as electrons. The
Pauli matrices are usually denoted by σx, σy, and σz.

Solution:

The Pauli spin matrices are defined as:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
The spin angular momentum operators Jx, Jy, and Jz for a spin-12 particle can be
expressed in terms of the Pauli matrices as follows:

Jx =
ℏ
2
σx, Jy =

ℏ
2
σy, Jz =

ℏ
2
σz

Conclusion:

The Pauli spin matrices σx, σy, and σz form the basis for representing the spin
operators Jx, Jy, and Jz of a spin-12 particle. These matrices are used extensively
in quantum mechanics to describe the spin state of particles, calculate spin dynam-
ics, and solve various quantum systems involving spin. Their importance lies in
their ability to represent the intrinsic angular momentum properties of fundamental
particles.
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59 Using the commutation relations [x, px] = [y, py] =
[z, pz] = iℏ, deduce the commutation relation between
the components of angular momentum operator L.

Introduction:

In quantum mechanics, the angular momentum operator L has three components:
Lx, Ly, and Lz. These components satisfy certain commutation relations derived
from the fundamental commutation relations between position (x, y, z) and momen-
tum (px, py, pz) operators. The goal is to deduce the commutation relations among
Lx, Ly, and Lz.

Solution:

The angular momentum operators in quantum mechanics are defined as:

Lx = ypz − zpy, Ly = zpx − xpz, Lz = xpy − ypx

We use the commutation relations between position and momentum operators:

[x, px] = iℏ, [y, py] = iℏ, [z, pz] = iℏ

and all other commutators like [x, py], [x, pz], etc., are zero.

Now, let us compute the commutation relations between the components of L.

1. Commutator of Lx and Ly:

[Lx, Ly] = [(ypz − zpy), (zpx − xpz)]

Expanding the commutator:

[Lx, Ly] = ypzzpx − ypzxpz − zpyzpx + zpyxpz

Using the commutation relations:

[Lx, Ly] = y[pz, z]px + [z, pz]pyx = iℏLz

2. Commutator of Ly and Lz:

[Ly, Lz] = [(zpx − xpz), (xpy − ypx)]

Expanding the commutator:

[Ly, Lz] = zpxxpy − zpxypx − xpzxpy + xpzypx

Using the commutation relations:

[Ly, Lz] = z[px, x]py + [x, px]pzy = iℏLx
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3. Commutator of Lz and Lx:

[Lz, Lx] = [(xpy − ypx), (ypz − zpy)]

Expanding the commutator:

[Lz, Lx] = xpyypz − xpyzpy − ypxypz + ypxzpy

Using the commutation relations:

[Lz, Lx] = x[py, y]pz + [y, py]pxz = iℏLy

Conclusion:

We have deduced the commutation relations between the components of the angular
momentum operator L:

[Lx, Ly] = iℏLz, [Ly, Lz] = iℏLx, [Lz, Lx] = iℏLy

These relations reflect the underlying algebraic structure of angular momentum in
quantum mechanics, which is fundamental to the study of rotational symmetries
and quantum states.
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60 Solve the Schrödinger equation for a particle in a
three-dimensional rectangular potential barrier. Ex-
plain the terms degenerate and non-degenerate states
in this context.

Introduction:

The Schrödinger equation is a fundamental equation in quantum mechanics that
describes how the quantum state of a physical system changes with time. For a
particle in a three-dimensional rectangular potential barrier, we solve the time-
independent Schrödinger equation, which is given by:

− ℏ2

2m
∇2ψ(x, y, z) + V (x, y, z)ψ(x, y, z) = Eψ(x, y, z), (1)

where:

• ℏ is the reduced Planck’s constant,

• m is the mass of the particle,

• ψ(x, y, z) is the wave function,

• V (x, y, z) is the potential energy,

• E is the total energy of the particle.

In a three-dimensional rectangular potential barrier, the potential V (x, y, z) is de-
fined as:

V (x, y, z) =

{
0 if 0 < x < a, 0 < y < b, 0 < z < c,

V0 otherwise,

where a, b, and c are the dimensions of the potential well.

Graph of the Wave Function:

To visualize the behavior of the wave function ψ(x, y, z) inside the potential barrier,
a plot is generated below to illustrate its variation in two dimensions:

Figure 5: Wave Function for a Particle in a Rectangular Potential Barrier

Solution:

To solve the Schrödinger equation, we employ the method of separation of variables.
Assume the wave function can be separated into three parts:

ψ(x, y, z) = X(x)Y (y)Z(z). (2)
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Substitute this into the Schrödinger equation:

− ℏ2

2m

(
d2X

dx2
Y Z +X

d2Y

dy2
Z +XY

d2Z

dz2

)
+ V (x, y, z)XY Z = EXY Z. (3)

Dividing through by XY Z, we get:

− ℏ2

2m

(
1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2

)
+ V (x, y, z) = E. (4)

Since the potential V (x, y, z) is zero inside the barrier, we can separate the equation
into three independent differential equations:

d2X

dx2
= −k2xX(x),

d2Y

dy2
= −k2yY (y),

d2Z

dz2
= −k2zZ(z), (5)

where k2x = 2mEx
ℏ2 , k2y =

2mEy

ℏ2 , and k2z = 2mEz
ℏ2 are the separation constants, and

E = Ex + Ey + Ez.

The general solutions for these equations inside the well are:

X(x) = A sin(kxx) +B cos(kxx),

Y (y) = C sin(kyy) +D cos(kyy),

Z(z) = E sin(kzz) + F cos(kzz).

Applying boundary conditions X(0) = X(a) = 0, Y (0) = Y (b) = 0, and Z(0) =
Z(c) = 0, the solutions reduce to:

X(x) = A sin
(nxπx

a

)
, nx = 1, 2, 3, . . . ,

Y (y) = C sin
(nyπy

b

)
, ny = 1, 2, 3, . . . ,

Z(z) = E sin
(nzπz

c

)
, nz = 1, 2, 3, . . . .

The energy levels are given by:

Enx,ny ,nz =
ℏ2π2

2m

(
n2x
a2

+
n2y
b2

+
n2z
c2

)
. (6)

Degenerate and Non-Degenerate States:

In the context of quantum mechanics, degenerate states refer to different quantum
states that have the same energy. For the three-dimensional rectangular potential
barrier, if multiple sets of quantum numbers (nx, ny, nz) result in the same energy
Enx,ny ,nz , these states are degenerate.

A non-degenerate state is a quantum state that has a unique set of quantum numbers
for a given energy level, meaning no other state shares the same energy.

For example, if a = b = c, then Enx,ny ,nz depends only on the sum n2x + n2y + n2z.
Thus, different combinations such as (1, 1, 2) and (2, 1, 1) will give the same energy,
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resulting in degeneracy. In contrast, if a ̸= b ̸= c, the energies are likely to be
non-degenerate.

Conclusion:

The Schrödinger equation for a particle in a three-dimensional rectangular potential
barrier shows that the energy levels depend on the dimensions of the barrier and
the quantum numbers (nx, ny, nz). Degenerate states occur when different quantum
states have the same energy, which is influenced by the symmetry of the
potential barrier. Non-degenerate states occur when each state has a unique
energy level. This concept is critical in understanding the behavior of quantum
particles in confined geometries and has applications in quantum wells, quantum
dots, and nanotechnology.

120



A/P

61 A particle trapped in an infinitely deep square well
of width a A particle has a wave function:

ψ(x) =

(
2

a

)1/2

sin
(πx
a

)
The walls are suddenly separated by an infinite dis-
tance. Find the probability of the particle having
momentum between p and p+ dp.

Introduction:

A particle is initially confined in a 1D infinite square well of width a, with wave
function:

ψ(x) =

√
2

a
sin
(πx
a

)
, 0 < x < a

Outside this region, ψ(x) = 0. After the well suddenly expands to infinite width
(i.e., the potential becomes zero everywhere), the wave function remains the same,
but the energy eigenstates change to those of a free particle. We are to determine
the probability that the particle has momentum in the range p to p+ dp.

Solution:

The probability amplitude for finding a momentum p is given by the Fourier trans-
form of ψ(x):

ϕ(p) =
1√
2πℏ

∫ ∞

−∞
ψ(x)e−ipx/ℏ dx

Since ψ(x) = 0 outside (0, a), the integral reduces to:

ϕ(p) =
1√
2πℏ

√
2

a

∫ a

0
sin
(πx
a

)
e−ipx/ℏ dx

We use the identity:
sin
(πx
a

)
=

1

2i

(
eiπx/a − e−iπx/a

)
So the integral becomes:

ϕ(p) =
1√
2πℏ

√
2

a
· 1

2i

∫ a

0

(
ei(

π
a
− p

ℏ)x − e−i(
π
a
+ p

ℏ)x
)
dx

=
1√
2πℏ

√
2

a
· 1

2i

[
ei(

π
a
− p

ℏ)a − 1

i
(
π
a − p

ℏ
) − e−i(

π
a
+ p

ℏ)a − 1

−i
(
π
a + p

ℏ
) ]

Using the identity eiθ − 1 = 2i sin(θ/2)eiθ/2, we simplify the expression to:

ϕ(p) =

√
8aℏ2
π2

·
cos
(ap
2ℏ
)

π2 −
(ap

ℏ
)2

Probability Density:

The probability that the particle has momentum in the interval (p, p+ dp) is:

P (p) dp = |ϕ(p)|2 dp
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Therefore, the probability density is:

P (p) =

(√
8aℏ2
π2

·
cos
(ap
2ℏ
)

π2 −
(ap

ℏ
)2
)2

Conclusion:

After the well expands to infinite width, the wave function remains unchanged but
is now projected onto momentum eigenstates. The above expression gives the prob-
ability density that the particle has momentum between p and p+ dp.
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62 Write down the matrix representation of the three
Pauli matrices σx, σy, and σz. Prove that these ma-
trices satisfy the following identities:

i. [σx, σy] = 2i σz
ii. [σ2, σx] = 0

Introduction:

The Pauli matrices are a set of three 2× 2 complex matrices which are widely used
in quantum mechanics to represent spin operators. The matrices are denoted by σx,
σy, and σz and are defined as:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (7)

We will prove the following identities involving the Pauli matrices:

1. (i) [σx, σy] = 2iσz

2. (ii) [σ2z , σx] = 0

Proof of Identity (i):

The commutator of two matrices A and B is defined as:

[A,B] = AB −BA. (8)

To prove identity (i), we need to compute the commutator [σx, σy]:

[σx, σy] = σxσy − σyσx (9)

=

(
0 1
1 0

)(
0 −i
i 0

)
−
(
0 −i
i 0

)(
0 1
1 0

)
. (10)

Calculating σxσy:

σxσy =

(
0 1
1 0

)(
0 −i
i 0

)
(11)

=

(
(0 · 0 + 1 · i) (0 · −i+ 1 · 0)
(1 · 0 + 0 · i) (1 · −i+ 0 · 0)

)
(12)

=

(
i 0
0 −i

)
. (13)

Calculating σyσx:

σyσx =

(
0 −i
i 0

)(
0 1
1 0

)
(14)

=

(
(0 · 0 + (−i) · 1) (0 · 1 + (−i) · 0)
(i · 0 + 0 · 1) (i · 1 + 0 · 0)

)
(15)

=

(
−i 0
0 i

)
. (16)
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Now, compute the commutator:

[σx, σy] =

(
i 0
0 −i

)
−
(
−i 0
0 i

)
(17)

=

(
i− (−i) 0− 0
0− 0 −i− i

)
(18)

=

(
2i 0
0 −2i

)
(19)

= 2i

(
1 0
0 −1

)
(20)

= 2iσz. (21)

Thus, we have shown that:

[σx, σy] = 2iσz. (22)

Proof of Identity (ii):

Introduction:

The Pauli matrices are a set of three 2× 2 complex matrices which are fundamental
in quantum mechanics. They are given by:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (23)

We are required to prove the following identity:

[σ2, σx] = 0, (24)

where σ2 = σ2x + σ2y + σ2z .

Proof:

First, we compute the square of each Pauli matrix:

σ2x =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
= I, (25)

σ2y =

(
0 −i
i 0

)(
0 −i
i 0

)
=

(
1 0
0 1

)
= I, (26)

σ2z =

(
1 0
0 −1

)(
1 0
0 −1

)
=

(
1 0
0 1

)
= I. (27)

Hence, we find that:

σ2x = σ2y = σ2z = I, (28)

where I is the 2× 2 identity matrix.

Now, compute σ2:
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σ2 = σ2x + σ2y + σ2z = I + I + I = 3I. (29)

Now, we find the commutator [σ2, σx]:

[σ2, σx] = [3I, σx] (30)
= 3(Iσx − σxI). (31)

Since the identity matrix I commutes with any matrix, we have:

Iσx = σxI = σx. (32)

Thus:

[σ2, σx] = 3(σx − σx) = 0. (33)

Conclusion:

We have shown that the commutator [σ2, σx] = 0, proving that the square of the
sum of the Pauli matrices commutes with σx.

125



A/P

63 Calculate the density of states for an electron mov-
ing freely inside a metal with the help of quantum
mechanical Schrödingers equation for free particle
in a box.

Introduction:

The density of states (DOS) describes the number of quantum states available to an
electron at a specific energy level in a given volume. For an electron moving freely
inside a metal, we can calculate the DOS using the quantum mechanical Schrödinger
equation for a free particle in a three-dimensional box.

The Schrödinger equation for a free particle in a box is given by:

− ℏ2

2m
∇2ψ(x, y, z) = Eψ(x, y, z), (34)

where:

• ℏ is the reduced Planck’s constant,

• m is the mass of the electron,

• ψ(x, y, z) is the wave function,

• E is the energy of the electron.

Solution:

Consider a free electron confined in a three-dimensional cubic box of side length L.
The boundary conditions require that the wave function ψ(x, y, z) vanishes at the
boundaries. The solution to the Schrödinger equation is a set of standing waves:

ψnx,ny ,nz(x, y, z) =
2

L3/2
sin
(nxπx

L

)
sin
(nyπy

L

)
sin
(nzπz

L

)
, (35)

where nx, ny, and nz are quantum numbers corresponding to each dimension and
can take values 1, 2, 3, . . ..

The energy of the electron in the box is given by:

Enx,ny ,nz =
ℏ2π2

2mL2
(n2x + n2y + n2z). (36)

To find the density of states, we calculate the number of states with energy less
than or equal to a given energy E. This corresponds to the number of lattice points
inside a sphere of radius n in n-space:

n2x + n2y + n2z ≤
2mL2E

ℏ2π2
. (37)

The number of such states is:

N(E) = 2× 1

8
· 4
3
πn3 =

1

3
π

(
2mL2E

ℏ2π2

)3/2

, (38)

where the factor of 2 accounts for spin degeneracy.

126



A/P

Differentiating with respect to E gives the density of states:

g(E) =
dN(E)

dE
=

1

3
π · 3

2

(
2mL2

ℏ2π2

)3/2

E1/2 (39)

=
π

2

(
2mL2

ℏ2π2

)3/2

E1/2. (40)

Now, the density of states per unit volume is:

G(E) =
g(E)

L3
=

1

2π2

(
2m

ℏ2

)3/2

E1/2. (41)

Conclusion:

The density of states for a free electron gas inside a metal is:

G(E) =
1

2π2

(
2m

ℏ2

)3/2

E1/2,

which is proportional to the square root of energy E. This result is fundamental in
solid-state physics, particularly in calculating electronic properties of metals.
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64 Evaluate the most probable distance of the electron
from nucleus of a hydrogen atom in its 2P state.
What is the probability of finding the electron at
this distance?

Introduction:

To find the most probable distance of an electron from the nucleus in a hydrogen
atom in the 2p state, we use the radial probability density function P (r), which is
given by:

P (r) = r2|R21(r)|2, (42)

where R21(r) is the radial wave function of the electron in the 2p state (quantum
numbers n = 2, l = 1).

For a hydrogen atom in the 2p state, the radial wave function is:

R21(r) =
1

4
√
6a50

re−r/2a0 , (43)

where:

• a0 is the Bohr radius, a0 ≈ 0.529Å,

• r is the radial distance from the nucleus.

Solution:

The radial probability density function P (r) is:

P (r) = r2|R21(r)|2 (44)

= r2

(
1

4
√
6a50

re−r/2a0

)2

(45)

=
r4

96a50
e−r/a0 . (46)

To find the most probable distance, we maximize P (r) by taking the derivative of
P (r) with respect to r and setting it to zero:

dP (r)

dr
=

d

dr

(
r4

96a50
e−r/a0

)
= 0. (47)

Applying the product rule:

dP (r)

dr
=

1

96a50

(
4r3e−r/a0 − r4

a0
e−r/a0

)
= 0. (48)

Factor out common terms:

1

96a50
e−r/a0r3

(
4− r

a0

)
= 0. (49)
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Since e−r/a0 ̸= 0 and r3 ̸= 0 for r > 0, we solve:

4− r

a0
= 0. (50)

This gives:

r = 4a0. (51)

Thus, the most probable distance of the electron from the nucleus in the 2p state is
4a0.

Probability at the Most Probable Distance:

Substitute r = 4a0 into the probability density function:

P (4a0) =
(4a0)

4

96a50
e−4a0/a0 . (52)

Simplify:

P (4a0) =
256a40
96a50

e−4 =
256

96a0
e−4. (53)

Further simplifying:

P (4a0) =
8

3a0
e−4. (54)

Conclusion:

The most probable distance of the electron from the nucleus in the 2p state of
a hydrogen atom is 4a0. The probability density of finding the electron at this
distance is correctly calculated as 8

3a0
e−4.
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65 Explain why the square of the angular momentum
L2 and only one of the components (Lx, Ly, Lz) of L
are regarded as constants of motion.

Introduction:

In quantum mechanics and classical mechanics, angular momentum is a crucial quan-
tity associated with rotational motion. Angular momentum is represented as a vector
L = (Lx, Ly, Lz), where Lx, Ly, and Lz are the components of the angular momen-
tum along the x-, y-, and z-axes, respectively. The square of the angular momentum
is defined as:

L2 = L2
x + L2

y + L2
z. (55)

We want to explain why L2 and only one of the components, such as Lz, are regarded
as constants of motion.

Solution:

1. Commutation Relations for Angular Momentum:

In quantum mechanics, the components of angular momentum obey the following
commutation relations:

[Lx, Ly] = iℏLz, [Ly, Lz] = iℏLx, [Lz, Lx] = iℏLy, (56)

where [A,B] = AB − BA is the commutator of operators A and B, and ℏ is the
reduced Planck’s constant.

2. Non-Commutativity of Components:

The above commutation relations indicate that the components Lx, Ly, and Lz do
not commute with each other. This non-commutativity implies that it is not possible
to simultaneously measure or define all three components of angular momentum
precisely. In other words, knowing one component, such as Lz, with certainty means
that there is an inherent uncertainty in the values of the other two components, Lx
and Ly. Therefore, only one component (commonly Lz) can be chosen as a constant
of motion.

3. Commutation with L2:

The square of the angular momentum, L2, however, commutes with each of the
components:

[L2, Lx] = 0, [L2, Ly] = 0, [L2, Lz] = 0. (57)

This means that L2 and any one component (like Lz) can be simultaneously mea-
sured or have well-defined values. Since L2 commutes with all three components, it
does not change with time and is regarded as a constant of motion.

4. Constants of Motion:

In the context of quantum mechanics, a constant of motion is an operator that
commutes with the Hamiltonian of the system. For a central potential (such as the
Coulomb potential in the hydrogen atom), the Hamiltonian H commutes with both
L2 and Lz:
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[H,L2] = 0, [H,Lz] = 0. (58)

This shows that L2 and Lz are conserved quantities or constants of motion. The
reason only one component (like Lz) can be a constant of motion, in addition to L2,
is due to the non-commutativity of the angular momentum components.

5. Physical Interpretation:

The choice of Lz as a constant of motion is often due to the symmetry of the
system. For example, in a spherically symmetric potential, the z-axis can be chosen
arbitrarily, and measuring Lz does not affect the spherically symmetric properties.
Since L2 represents the total angular momentum, it remains conserved, but only
one component (like Lz) can be simultaneously conserved due to the uncertainty
principle and the commutation relations.

Conclusion:

The square of the angular momentum L2 and only one component (such as Lz)
are regarded as constants of motion because L2 commutes with all components of
angular momentum, while the components themselves do not commute with each
other. This non-commutativity reflects the quantum mechanical uncertainty princi-
ple, allowing only one component of angular momentum to be a constant of motion
along with the total angular momentum squared.

131



A/P

66 Prove the following identities:
(i) Prove the identity:

[p̂x, L̂y] = iℏp̂z (59)

Introduction:

The first identity involves the commutator of the momentum operator p̂x and the
angular momentum operator L̂y. The commutator relations in quantum mechanics
are fundamental and provide insights into the underlying physical properties such
as angular momentum.

Solution:

Step 1: Definitions and Basic Commutators:

The momentum operator in the x-direction is:

p̂x = −iℏ ∂
∂x
. (60)

The angular momentum operator in the y-direction is:

L̂y = x̂p̂z − ẑp̂x. (61)

Step 2: Compute the Commutator:

We need to compute [p̂x, L̂y]:

[p̂x, L̂y] = [p̂x, x̂p̂z − ẑp̂x].

Expand the commutator:

[p̂x, L̂y] = [p̂x, x̂p̂z]− [p̂x, ẑp̂x].

Step 3: Evaluate Each Term:

1. First term: [p̂x, x̂p̂z]

Using the property [p̂x, x̂] = −iℏ and [p̂x, p̂z] = 0, we get:

[p̂x, x̂p̂z] = ([p̂x, x̂]p̂z + x̂[p̂x, p̂z]) = (−iℏ)p̂z.

2. Second term: [p̂x,−ẑp̂x]

Since [p̂x, ẑ] = 0 and [p̂x, p̂x] = 0, this term is:

[p̂x,−ẑp̂x] = −ẑ[p̂x, p̂x] = 0.

Step 4: Combine Results:

Combining both terms:

[p̂x, L̂y] = −iℏp̂z.

Thus,
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[p̂x, L̂y] = iℏp̂z.

Conclusion for Part (i):

The commutator identity [p̂x, L̂y] = iℏp̂z is proven.

(ii) Prove the identity:

ei(σ⃗·n̂)θ = cos θ + i(σ⃗ · n̂) sin θ. (62)

Introduction:

The second identity involves the exponential of an operator, which is frequently used
in quantum mechanics for rotations and time evolution, especially in the context of
spin and angular momentum.

Solution:

Step 1: Understanding the Exponential Operator:

The term ei(σ⃗·n̂)θ represents a rotation operator in quantum mechanics. Here, σ⃗
is the Pauli vector (composed of Pauli matrices σx, σy, σz), and n̂ is a unit vector
defining the axis of rotation.

Step 2: Using the Power Series Expansion:

We can use the series expansion for the exponential function:

ei(σ⃗·n̂)θ =
∞∑
n=0

(i(σ⃗ · n̂)θ)n

n!
.

Separate the series into even and odd terms:

ei(σ⃗·n̂)θ =

( ∞∑
n=0

(i(σ⃗ · n̂)θ)2n

(2n)!

)
+

( ∞∑
n=0

(i(σ⃗ · n̂)θ)2n+1

(2n+ 1)!

)
.

Step 3: Simplify Using Matrix Properties:

Since (σ⃗ · n̂)2 = I (identity matrix), we have:

(i(σ⃗ · n̂)θ)2n = (i2)n((σ⃗ · n̂)2)nθ2n = (−1)nθ2nI.

Thus, the first series becomes:

∞∑
n=0

(−1)nθ2n

(2n)!
I = cos θ I.

For the odd terms:

(i(σ⃗ · n̂)θ)2n+1 = i(−1)nθ2n+1(σ⃗ · n̂),

which simplifies to:
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∞∑
n=0

(−1)nθ2n+1

(2n+ 1)!
i(σ⃗ · n̂) = i(σ⃗ · n̂) sin θ.

Step 4: Combine Results:

Combining both terms:

[p̂x, L̂y] = −iℏp̂z.

Thus,

[p̂x, L̂y] = −iℏp̂z.

Conclusion for Part (ii):

The identity ei(σ⃗·n̂)θ = cos θ+ i(σ⃗ · n̂) sin θ is proven using the series expansion of the
exponential function and properties of the Pauli matrices.
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67 Show that En = ⟨V ⟩ in the stationary states of the
hydrogen atom.

Introduction:

In quantum mechanics, the energy En of a stationary state of the hydrogen atom
is the sum of the kinetic energy ⟨T ⟩ and the potential energy ⟨V ⟩. The potential
energy of the electron in a hydrogen atom due to the electrostatic force between the
nucleus and the electron is given by:

V (r) = − e2

4πϵ0r
.

Solution:

According to the virial theorem, for a bound quantum system with an inverse-
square potential (such as the Coulomb potential), the average kinetic energy and
potential energy are related as:

⟨T ⟩ = −1

2
⟨V ⟩.

The total energy of the system is:

En = ⟨T ⟩+ ⟨V ⟩.

Substituting the virial relation:

En = −1

2
⟨V ⟩+ ⟨V ⟩ = 1

2
⟨V ⟩.

Hence, the average potential energy is:

⟨V ⟩ = 2En .

Also, the average kinetic energy becomes:

⟨T ⟩ = −En .

Conclusion:

The total energy of the hydrogen atom in a stationary state is half the average
potential energy, not equal to it. Therefore, the correct identity is:

En =
1

2
⟨V ⟩ .

This follows directly from applying the quantum virial theorem to the Coulomb
potential.
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68 Obtaining the Normalized Eigenvectors of σx and σy
Matrices.

Introduction:

The Pauli matrices σx and σy are defined as:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
We will find the normalized eigenvectors of these matrices.

1. Eigenvectors of σx:

The eigenvalue equation for σx is:

σxv = λv, where v =

(
a
b

)
Substitute σx:

(
0 1
1 0

)(
a
b

)
= λ

(
a
b

)
This results in two equations:

b = λa, a = λb

Substitute b = λa into a = λb:

a = λ(λa) =⇒ a(λ2 − 1) = 0

Thus, λ = ±1.

For λ = 1:

b = a =⇒ v1 =

(
1
1

)
For λ = −1:

b = −a =⇒ v2 =

(
1
−1

)
The normalized eigenvectors of σx are:

v1 =
1√
2

(
1
1

)
, v2 =

1√
2

(
1
−1

)
2. Eigenvectors of σy:

The eigenvalue equation for σy is:
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σyv = λv, where v =

(
a
b

)
Substitute σy:

(
0 −i
i 0

)(
a
b

)
= λ

(
a
b

)
This results in two equations:

−ib = λa, ia = λb

Substitute b = λa
i into the second equation:

ia = λ

(
λa

i

)
=⇒ i2a = λ2a =⇒ −a = λ2a

Thus, λ = ±1.

For λ = 1:

−ib = a =⇒ b = ia =⇒ v1 =

(
1
i

)
For λ = −1:

−ib = −a =⇒ b = −ia =⇒ v2 =

(
1
−i

)
The normalized eigenvectors of σy are:

v1 =
1√
2

(
1
i

)
, v2 =

1√
2

(
1
−i

)
Conclusion:

The corrected normalized eigenvectors for σx are 1√
2

(
1
1

)
and 1√

2

(
1
−1

)
, while for

σy, they are 1√
2

(
1
i

)
and 1√

2

(
1
−i

)
. These eigenvectors form an orthonormal basis

for the Hilbert space associated with the spin of a spin-1/2 particle.
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69 Show that En = ⟨V ⟩ in the stationary states of the
hydrogen atom.

Introduction:

In quantum mechanics, the total energy En of a stationary state of the hydrogen
atom is the sum of the average kinetic energy ⟨T ⟩ and the average potential energy
⟨V ⟩. The electron in a hydrogen atom experiences a Coulomb potential due to the
proton, given by:

V (r) = − e2

4πϵ0r

Solution:

To investigate the relationship between En and ⟨V ⟩, we use the virial theorem. For
a potential of the form V (r) ∝ rn, the virial theorem states:

⟨T ⟩ = n

2
⟨V ⟩

In the case of the hydrogen atom, the Coulomb potential behaves as V (r) ∝ −1
r ,

i.e., n = −1, so the virial theorem gives:

⟨T ⟩ = −1

2
⟨V ⟩

The total energy is:

En = ⟨T ⟩+ ⟨V ⟩ = −1

2
⟨V ⟩+ ⟨V ⟩ = 1

2
⟨V ⟩

Thus, the correct relation is:

En =
1

2
⟨V ⟩ or equivalently ⟨V ⟩ = 2En

Conclusion:

Therefore, in the stationary states of the hydrogen atom, the average potential
energy is twice the total energy, and the total energy is half the average potential
energy. The originally proposed identity En = ⟨V ⟩ is incorrect. The correct relation
is En = 1

2⟨V ⟩, a direct result of applying the virial theorem to the inverse-square
Coulomb potential.
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70 Calculate the zero-point energy for a particle in an
infinite potential well for the following cases: (i) a
100 g ball confined on a 5 m long line. (ii) an oxygen
atom confined to a 2×10−1 m lattice. (iii) an electron
confined to a 10−10 m atom.
Why zero point energy is not important for macro-
scopic objects? Comment.

Introduction: This problem requires calculating the zero-point energy (the ground
state energy) for a particle confined in a one-dimensional infinite potential well (also
known as a particle in a box). The formula for the ground state energy is given by:

E1 =
h2

8mL2

where h is Planck’s constant (h = 6.626× 10−34 Jůs), m is the mass of the particle,
and L is the width of the potential well.

We will calculate this for:

1. A 100 g (0.1 kg) ball confined in a 5m long box.

2. An oxygen atom (m ≈ 2.66× 10−26 kg) in a 0.2m box.

3. An electron (me = 9.11× 10−31 kg) in a 10−10 m box.

Solution:

Case (i): 100 g ball in a 5 m line

Given: m = 0.1 kg, L = 5m

E1 =
(6.626× 10−34)2

8× 0.1× (5)2
=

4.39× 10−67

8× 0.1× 25
=

4.39× 10−67

20
= 2.195× 10−68 J

Case (ii): Oxygen atom in a 0.2 m lattice

Given: m = 2.66× 10−26 kg, L = 0.2m

E1 =
(6.626× 10−34)2

8× 2.66× 10−26 × (0.2)2
=

4.39× 10−67

8× 2.66× 10−26 × 0.04
=

4.39× 10−67

8.51× 10−27
≈ 5.16×10−41 J

Case (iii): Electron in a 10−10 m atom

Given: m = 9.11× 10−31 kg, L = 10−10 m

E1 =
(6.626× 10−34)2

8× 9.11× 10−31 × (10−10)2
=

4.39× 10−67

8× 9.11× 10−31 × 10−20
=

4.39× 10−67

7.29× 10−50
≈ 6.02×10−18 J

Converting to electronvolts:

E1 ≈
6.02× 10−18

1.602× 10−19
≈ 37.6 eV
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Comment on Macroscopic Objects:

The zero-point energy for macroscopic objects such as a 100 g ball is extremely
small (∼ 10−68 J), far below any measurable energy scale and thus negligible. In
contrast, quantum systems like electrons exhibit zero-point energies comparable to
their interaction energies. Therefore, quantum effects like zero-point energy are only
significant for microscopic particles where the product mL2 is sufficiently small.

Conclusion:

1. Zero-point energy of 100 g ball in 5 m box: 2.2× 10−68 J

2. Zero-point energy of oxygen atom in 0.2 m lattice: 5.2× 10−40 J

3. Zero-point energy of electron in 10−10 m atom: 6.02× 10−18 J or 37.6 eV

Zero-point energy is negligible for macroscopic systems but crucial in microscopic
quantum systems due to the inverse dependence on mass and confinement size.
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