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Waves and Optics - Part 1
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1 In the propagation of longitudinal waves in a fluid
contained in an infinitely long tube of cross-section
A, show that ρ = ρ0

(
1− ∂ξ

∂x

)
, where ρ0 is the equilib-

rium density, ρ is the disturbed density, and ∂ξ
∂x is the

volume strain
(∣∣∣ ∂ξ∂x∣∣∣≪ 1

)
.

Introduction: In this problem, we examine the relationship between the equilib-
rium density ρ0 of a fluid and its disturbed density ρ due to a longitudinal wave
propagating through an infinitely long tube of cross-sectional area A. The displace-
ment of fluid elements from equilibrium is represented by ξ(x, t), where ξ is the
displacement of a fluid particle initially at position x. The volume strain is given by
∂ξ

∂x
. The goal is to derive the expression:

ρ = ρ0

(
1− ∂ξ

∂x

)

under the assumption that the strain is small, i.e.,
∣∣∣∣∂ξ∂x

∣∣∣∣≪ 1.

Solution:

Consider a small fluid element of initial length ∆x in the undisturbed state. Its
equilibrium volume is:

V0 = A∆x

and its mass is:
m = ρ0V0 = ρ0A∆x

Due to the passage of a longitudinal wave, let the displacement of the fluid at position
x be ξ(x) and at x+∆x be ξ(x+∆x). The new length of the element becomes:

∆x′ = (x+∆x+ ξ(x+∆x))− (x+ ξ(x)) = ∆x+ ξ(x+∆x)− ξ(x)

Expanding ξ(x+∆x) in a Taylor series:

ξ(x+∆x) ≈ ξ(x) + ∆x
∂ξ

∂x

Hence,

∆x′ ≈ ∆x+∆x
∂ξ

∂x
= ∆x

(
1 +

∂ξ

∂x

)
So, the new volume of the fluid element is:

V = A∆x′ = A∆x

(
1 +

∂ξ

∂x

)

By conservation of mass, the mass of the fluid element remains constant, so the
disturbed density is:

ρ =
m

V
=

ρ0A∆x

A∆x(1 + ∂ξ
∂x)

=
ρ0

1 + ∂ξ
∂x
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For small strain,
∣∣∣ ∂ξ∂x ∣∣∣≪ 1, we use the binomial approximation:

1

1 + ∂ξ
∂x

≈ 1− ∂ξ

∂x

Thus,

ρ ≈ ρ0

(
1− ∂ξ

∂x

)
Conclusion: We have shown that under the assumption of small volume strain, the
disturbed density ρ of the fluid in a longitudinal wave is given by:

ρ = ρ0

(
1− ∂ξ

∂x

)

This relation expresses how a local compression (negative ∂ξ
∂x , where particles move

closer together) increases the density above ρ0, while a local rarefaction (positive
∂ξ
∂x , where particles move apart) decreases the density below ρ0.
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2 Write down the one-dimensional harmonic oscillator
differential equation under damping and its solution
for the lightly damped condition, with the meanings
of symbols. Determine the dependent energy in the
lightly damped condition.

Differential Equation: The equation of motion for a damped harmonic oscillator
is:

m
d2x

dt2
+ c

dx

dt
+ kx = 0

where:

• x(t): Displacement as a function of time,

• m: Mass of the oscillator,

• c: Damping coefficient,

• k: Spring constant.

Rewritten Form: Define:

ω0 =

√
k

m
(natural frequency), γ =

c

2m
(damping parameter).

The equation becomes:
d2x

dt2
+ 2γ

dx

dt
+ ω2

0x = 0.

Solution for Light Damping (γ < ω0): Assume x(t) = ert, yielding the charac-
teristic equation:

r2 + 2γr + ω2
0 = 0.

The roots are complex:

r = −γ ± iωd, ωd =
√

ω2
0 − γ2.

The general solution is:
x(t) = Ae−γt cos(ωdt+ ϕ),

where:

• A: Initial amplitude (from A =
√

C2
1 + C2

2 ),

• ϕ: Phase constant (from tanϕ = −C2/C1),

• ωd: Damped angular frequency.

Energy in Lightly Damped Case: The total mechanical energy is:

E(t) =
1

2
mẋ2 +

1

2
kx2.

Substitute x(t) and ẋ(t) = Ae−γt[−γ cos(ωdt+ ϕ)− ωd sin(ωdt+ ϕ)]:

Using cos2 θ + sin2 θ = 1 and averaging over fast oscillations (since γ ≪ ω0):

E(t) ≈ 1

2
mA2e−2γt(ω2

0).
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Thus:
E(t) = E0e

−2γt, E0 =
1

2
mA2ω2

0.

Conclusion: The displacement follows an exponentially decaying oscillation:

x(t) = Ae−γt cos(ωdt+ ϕ),

and the energy decays as:
E(t) = E0e

−2γt.

This reflects energy dissipation at a rate 2γ.
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3 Explain the physical significance of group velocity
from the concept of phase velocity with relevant ex-
pressions.

Introduction: In wave mechanics, especially when dealing with wave packets or
modulated waves, it is essential to distinguish between phase velocity and group
velocity. Phase velocity describes the motion of individual wave crests, while group
velocity corresponds to the propagation of the wave packet envelope that carries
energy or information. This problem asks for the physical significance of group
velocity in relation to phase velocity, including the relevant mathematical framework.

Solution: We begin by defining two types of velocities associated with waves:

• Phase velocity (vp): This is the speed at which individual points of constant
phase (like wave crests or troughs) propagate in a wave.

• Group velocity (vg): This is the speed at which the overall shape or envelope
of a wave packet (a localized group of waves) propagates. It represents the
speed of energy and information transfer.

Consider the superposition of two harmonic waves with slightly different frequencies
(ω1, ω2) and wave numbers (k1, k2):

y1 = A cos(k1x− ω1t)

y2 = A cos(k2x− ω2t)

Using the trigonometric identity cosA + cosB = 2 cos
(
A+B
2

)
cos
(
A−B
2

)
, their su-

perposition (y = y1 + y2) yields:

y = 2A cos

(
k2 − k1

2
x− ω2 − ω1

2
t

)
cos

(
k1 + k2

2
x− ω1 + ω2

2
t

)
Let ∆k = k2 − k1, ∆ω = ω2 − ω1, k̄ = k1+k2

2 , and ω̄ = ω1+ω2
2 . The equation can be

rewritten as:
y = 2A cos

(
∆k

2
x− ∆ω

2
t

)
cos
(
k̄x− ω̄t

)
This equation describes a wave whose amplitude varies slowly in space and time.
The first cosine term, cos

(
∆k
2 x− ∆ω

2 t
)
, represents the envelope of the wave packet,

which has a much longer wavelength and period than the second cosine term,
cos
(
k̄x− ω̄t

)
, which represents the carrier wave.

From the above superposition, we can define the velocities:

• Phase velocity (vp) of the individual (carrier) waves:

vp =
ω̄

k̄

• Group velocity (vg) of the envelope: The speed of the envelope is determined
by the term ∆ω

2 t − ∆k
2 x. For a constant phase point on the envelope, we set

the argument to a constant:

∆k

2
x− ∆ω

2
t = constant

Differentiating with respect to time, we get:

∆k

2

dx

dt
− ∆ω

2
= 0
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Thus, the velocity of the envelope is dx
dt = ∆ω

∆k . In the limit as ∆k → 0 (i.e.,
for a continuous distribution of wave numbers), the group velocity is defined
as:

vg = lim
∆k→0

∆ω

∆k
=

dω

dk

Physical Interpretation are as follows:

• Energy and Information Transport: The most significant physical inter-
pretation of group velocity is that it represents the speed at which energy
and information are transported by a wave. Unlike phase velocity, which
can sometimes exceed the speed of light or even be negative, group velocity
always adheres to the principles of causality and special relativity, meaning
vg ≤ c (the speed of light in vacuum).

• Dispersion: In a dispersive medium, the phase velocity (vp = ω/k) de-
pends on the frequency ω (or equivalently, the wave number k). This means
that different frequency components of a wave packet travel at different phase
velocities. As a result, the wave packet spreads out over time, and the group
velocity differs from the phase velocity. Mathematically:

vg =
dω

dk
̸= vp =

ω

k

In a non-dispersive medium, ω is directly proportional to k (ω = vk, where
v is a constant). In this case, dω/dk = v, and ω/k = v, so vg = vp.

• Examples:

– Deep water waves: For deep water waves, the dispersion relation is
ω =

√
gk, where g is the acceleration due to gravity. Calculating the

velocities:
vp =

ω

k
=

√
gk

k
=

√
g

k

vg =
dω

dk
=

d

dk
(
√
gk) =

1

2

√
g

k
=

1

2
vp

This means that in deep water, the energy of a wave travels at half the
speed of its individual crests.

– Electromagnetic waves in dielectric media: Light pulses in a dielec-
tric medium also exhibit dispersion, where the group velocity determines
the speed at which the light pulse (and thus information) propagates.

– Quantum wave packets: In quantum mechanics, a particle is described
by a wave packet. The group velocity of this wave packet corresponds to
the classical velocity of the particle.

Conclusion: The group velocity, defined as vg = dω/dk, is a fundamental concept
in wave theory. It represents the speed at which the envelope of a wave packet
propagates, signifying the rate of energy and information transfer. While phase
velocity describes the motion of individual wave crests, group velocity is the phys-
ically meaningful velocity for observable phenomena. The distinction between vg
and vp is crucial in dispersive media, where different frequency components travel
at different speeds, leading to the spreading of wave packets. This concept finds
widespread applications in fields such as optics, acoustics, quantum mechanics, and
fluid dynamics.
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4 Prove that the group velocity Vg of electromagnetic
waves in a dispersive medium with refractive index
n(λ0) at wavelength λ0 is given by

Vg =
c

n(λ0)− λ0
dn(λ0)
dλ0

where c is the free space velocity of light. Find the
time taken for the electromagnetic pulse to travel a
distance D.

Introduction: We are asked to derive the expression for group velocity Vg of elec-
tromagnetic waves in a dispersive medium, expressed in terms of the wavelength-
dependent refractive index n(λ), evaluated at λ0. Then, using the derived expres-
sion, we are to find the time taken for a pulse to propagate a distance D through
the medium.

Solution:

The phase velocity of electromagnetic waves in a medium is:

vp =
c

n(λ)

The angular frequency ω is related to wave number k by:

ω =
2πc

λ
, k =

2πn(λ)

λ

Group velocity is defined as:
Vg =

dω

dk

To compute this, we write ω and k as functions of λ:

ω(λ) =
2πc

λ

k(λ) =
2πn(λ)

λ

Then:
dω

dλ
= −2πc

λ2
,

dk

dλ
=

2π

λ2

[
λ
dn

dλ
− n(λ)

]
Thus:

Vg =
dω/dλ

dk/dλ

=
−2πc

λ2

2π
λ2

[
λdn
dλ − n(λ)

]
=

c

n(λ)− λdn
dλ

Evaluating this at λ0, we get:

Vg =
c

n(λ0)− λ0
dn(λ0)
dλ0
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Time taken for the pulse to travel a distance D:

If the pulse propagates at group velocity Vg, then the time taken is:

t =
D

Vg
=

D
c

n(λ0)− λ0
dn(λ0)

dλ0

=
D

c

[
n(λ0)− λ0

dn(λ0)

dλ0

]

Conclusion:

The group velocity of an electromagnetic wave in a dispersive medium with wavelength-
dependent refractive index n(λ) is:

Vg =
c

n(λ0)− λ0
dn(λ0)
dλ0

The time taken for a pulse to travel a distance D in such a medium is:

t =
D

c

[
n(λ0)− λ0

dn(λ0)

dλ0

]

10



A/P

5 The motion of a damped mechanical oscillator is rep-
resented by mẍ + aẋ + βx = 0 where m, a and β are
constants. The oscillator is critically damped. The
system is given an impulse at x = 0 and t = 0, result-
ing in an initial velocity v. After how much time the
system experiences maximum displacement?

Introduction: This problem involves a critically damped harmonic oscillator de-
scribed by the differential equation:

mẍ+ aẋ+ βx = 0

We are told that the system is critically damped and initially at rest position x(0) = 0
but is given an initial velocity v at t = 0. The objective is to determine the time at
which the displacement x(t) reaches its maximum value.

Solution:

For critical damping, the damping coefficient satisfies:

a2

4m2
=

β

m
⇒ Characteristic equation has a repeated root

The general solution for a critically damped system is:

x(t) = (A+Bt)e−γt, where γ =
a

2m

Given initial conditions:

x(0) = 0 ⇒ A = 0

ẋ(0) = v = Be0 − γ(A+B · 0)e0 = B

So the displacement becomes:
x(t) = vte−γt

To find the time of maximum displacement, set dx
dt = 0:

dx

dt
= ve−γt(1− γt) = 0

⇒ 1− γt = 0 ⇒ t =
1

γ
=

2m

a

Conclusion:

The system reaches its maximum displacement at time:

t =
2m

a

This result is derived using the form of the solution for a critically damped oscillator
and applying the condition for extremum of the displacement function.
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6 Show that a travelling wave on the string, clamped
on both the ends, undergoes a phase change of π.
Hence obtain the time-independent form of the wave
equation representing a standing wave on the string.

Introduction: A string fixed at both ends imposes boundary conditions that lead
to the formation of standing waves due to the superposition of incident and reflected
travelling waves. At a rigid boundary (clamped end), a wave reflects with a phase
change of π (i.e., a sign reversal). The objective is to show this phase shift and
then derive the spatial (time-independent) form of the wave equation representing
a standing wave.

Solution:

Consider a travelling wave on a string given by:

yi(x, t) = A sin(kx− ωt)

This wave travels in the positive x-direction toward a clamped end at x = L.

Proof of Phase Change of :

At the clamped boundary (x = L), the displacement must be zero at all times:

y(x = L, t) = 0 for all t

Let the reflected wave be of the form:

yr(x, t) = B sin(k(2L− x)− ωt+ ϕ)

where B is the amplitude and ϕ is the phase change upon reflection.

The total displacement is:

y(x, t) = yi(x, t) + yr(x, t) = A sin(kx− ωt) +B sin(k(2L− x)− ωt+ ϕ)

Applying the boundary condition at x = L:

y(L, t) = A sin(kL− ωt) +B sin(kL− ωt+ ϕ) = 0

For this to be satisfied for all values of t, we need:

A sin(kL− ωt) +B sin(kL− ωt+ ϕ) = 0

This requires B = A and ϕ = π, giving us:

yr(x, t) = A sin(k(2L− x)− ωt+ π) = −A sin(k(2L− x)− ωt)

Since k(2L − x) = k(L + (L − x)) = kL + k(L − x), and noting that the reflected
wave travels in the negative x-direction, we can write:

yr(x, t) = −A sin(kx+ ωt)

Thus, the phase change upon reflection is π.

Standing Wave Formation:

12
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The total displacement is:

y(x, t) = yi(x, t) + yr(x, t)

= A sin(kx− ωt)−A sin(kx+ ωt)

Using the trigonometric identity:

sin a− sin b = 2 cos

(
a+ b

2

)
sin

(
a− b

2

)

We get:

y(x, t) = 2A cos

(
(kx− ωt) + (kx+ ωt)

2

)
sin

(
(kx− ωt)− (kx+ ωt)

2

)
= 2A cos(kx) sin(−ωt)

= −2A cos(kx) sin(ωt)

This can be written as:

y(x, t) = [2A cos(kx)] sin(ωt+ π)

Boundary Conditions and Quantization:

For a string clamped at both ends (x = 0 and x = L): - At x = 0: y(0, t) =
2A cos(0) sin(ωt+ π) = 0

This suggests we need to reconsider. For both boundaries to be satisfied, we need:

y(x, t) = [2A sin(kx)] cos(ωt)

This satisfies: - y(0, t) = 2A sin(0) cos(ωt) = 0 - y(L, t) = 2A sin(kL) cos(ωt) = 0

The second condition requires sin(kL) = 0, which gives:

kL = nπ ⇒ k =
nπ

L
(n = 1, 2, 3, ...)

Time-independent Form:

The time-independent (spatial) part of the standing wave is:

Y (x) = 2A sin(kx) = 2A sin
(nπx

L

)
Conclusion: A travelling wave reflecting off a clamped end undergoes a phase
change of due to the boundary condition requirement. The superposition of incident
and reflected waves forms a standing wave with time-independent spatial form:

Y (x) = 2A sin
(nπx

L

)
where n = 1, 2, 3, ... represents the mode number, and this form satisfies both bound-
ary conditions Y (0) = Y (L) = 0.
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7 During an earthquake, a horizontal shelf moves verti-
cally. If its motion can be regarded simple harmonic,
calculate the maximum value of amplitude of oscilla-
tion so that the books resting on it stay in contact
with it always. Take g = 9.8ms−2 and T = 0.5 s.

Introduction: The problem describes vertical simple harmonic motion (SHM) of a
shelf during an earthquake. To ensure that books on the shelf stay in contact with
it at all times, we need to determine the condition under which the normal force
between the books and shelf remains positive throughout the motion. We are to
calculate the maximum amplitude A of this SHM under this condition, given that
the period of oscillation is T = 0.5 s and g = 9.8m/s2.

Solution:

Consider the forces acting on a book of mass m resting on the shelf. The forces are:

• Weight: mg (downward)

• Normal force from shelf: N (upward)

For the book to remain in contact with the shelf, we require N ≥ 0 at all times.

Applying Newton’s second law in the vertical direction (taking upward as positive):

N −mg = ma

where a is the acceleration of the shelf (and hence the book).

Therefore: N = m(g + a)

For contact to be maintained: N ≥ 0, which gives us:

m(g + a) ≥ 0

g + a ≥ 0

a ≥ −g

The most critical condition occurs when the shelf has maximum downward acceler-
ation. In SHM, the maximum acceleration is:

amax = ω2A

For the shelf moving downward with maximum acceleration, a = −ω2A. The contact
condition becomes:

−ω2A ≥ −g

ω2A ≤ g

The angular frequency ω is related to the time period T by:

ω =
2π

T

Substituting T = 0.5 s:
ω =

2π

0.5
= 4π rad/s
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Substituting into the contact condition:

(4π)2A ≤ g

16π2A ≤ 9.8

A ≤ 9.8

16π2

Calculating the numerical value:

A ≤ 9.8

16× (3.1416)2
=

9.8

157.9136
≈ 0.062m

Conclusion: The maximum amplitude of oscillation that ensures the books remain
in contact with the shelf is approximately 0.062m or 6.2 cm.
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8 The dispersion relation for deep water waves is given
by ω2 = gk+ ak3, where g and a are constants. Obtain
expressions for phase velocity and group velocity in
terms of the wavelength λ. ω and k represent the
angular frequency and wave number, respectively.

Introduction: The problem provides a dispersion relation for deep water waves as
ω2 = gk + ak3, where ω is the angular frequency, k is the wave number, g is the
acceleration due to gravity, and a is a constant. We are to derive expressions for
phase velocity vp and group velocity vg in terms of the wavelength λ.

Solution:

We start with the given dispersion relation:

ω2 = gk + ak3

Taking square root on both sides:

ω =
√
gk + ak3

Phase velocity vp is defined as:
vp =

ω

k

Substituting ω:
vp =

1

k

√
gk + ak3

Factor k inside the square root:

vp =

√
g

k
+ ak

Now, express k in terms of wavelength λ:

k =
2π

λ

Then:

vp =

√
g
2π
λ

+ a · 2π
λ

=

√
gλ

2π
+

2πa

λ

Group velocity vg is defined as:

vg =
dω

dk

Differentiate the original dispersion relation:

ω = (gk + ak3)1/2

Using chain rule:

dω

dk
=

1

2
(gk + ak3)−1/2(g + 3ak2) =

g + 3ak2

2
√
gk + ak3

16
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Therefore:
vg =

g + 3ak2

2
√

gk + ak3

Now convert to λ using k = 2π
λ and then Substitute into the expression:

vg =
g + 3a

(
4π2

λ2

)
2

√
g
(
2π
λ

)
+ a

(
8π3

λ3

) =
g + 12π2a

λ2

2
√

2πg
λ + 8π3a

λ3

Conclusion: The expressions for phase and group velocities in terms of the wave-
length λ are:

• Phase velocity:

vp =

√
gλ

2π
+

2πa

λ

• Group velocity:

vg =
g + 12π2a

λ2

2
√

2πg
λ + 8π3a

λ3

These describe how wave packets propagate through deep water in the presence
of both gravitational and capillary effects.
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9 The displacement associated with a three-dimensional
plane wave is given by Ψ(x, y, z, t) = a cos

[√
3
2 kx+ 1

2ky − ωt
]
.

Calculate the angles made by the propagating wave
with the x, y and z-axes.

Introduction: The problem provides the displacement of a three-dimensional plane
wave in the form of a cosine function. The spatial part of the wave argument
represents the scalar product k⃗ · r⃗, which defines the direction of wave propagation.
Our task is to find the angles the wave vector k⃗ makes with the x-, y-, and z-axes.

Solution:

The wave function is:

Ψ(x, y, z, t) = a cos

[√
3

2
kx+

1

2
ky − ωt

]

We can identify the direction of the wave vector k⃗ from the argument of the cosine
function. It has components:

k⃗ =

(√
3

2
k,

1

2
k, 0

)

This vector represents the direction of propagation. We normalize it to find the
direction cosines.

Magnitude of the wave vector k⃗:

|⃗k|=

√√√√(√
3

2
k

)2

+

(
1

2
k

)2

+ 02 = k

√
3

4
+

1

4
= k

Let θx, θy, and θz be the angles made by k⃗ with the x, y, and z axes respectively.

Using direction cosines:

cos θx =
kx

|⃗k|
=

√
3
2 k

k
=

√
3

2

cos θy =
ky

|⃗k|
=

1
2k

k
=

1

2

cos θz =
kz

|⃗k|
=

0

k
= 0

Compute angles using inverse cosine:

• θx = cos−1
(√

3
2

)
= 30◦

• θy = cos−1
(
1
2

)
= 60◦

• θz = cos−1(0) = 90◦

Conclusion: The wave vector makes the following angles with the coordinate axes:

• 30◦ with the x-axis,
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• 60◦ with the y-axis,

• 90◦ with the z-axis.

This indicates that the wave propagates in the xy-plane, making specific angles with
the coordinate directions.
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10 In a certain engine, a piston undergoes vertical SHM
with an amplitude of 10 cm. A washer rests on the
top of the piston. As the motor is slowly speeded
up, at what frequency will the washer no longer stay
in contact with the piston?

Introduction: This problem considers a washer placed atop a piston undergoing
vertical simple harmonic motion (SHM) with amplitude A = 10 cm = 0.1m. As the
frequency increases, the acceleration of the piston increases. We need to find the
critical frequency at which the washer loses contact with the piston.

Solution:

Let’s analyze the forces on the washer of mass m:

• Weight: mg (downward)

• Normal force from piston: N (upward)

For the washer to remain in contact: N ≥ 0

Applying Newton’s second law (taking upward as positive):

N −mg = ma

N = m(g + a)

For contact to be maintained: N ≥ 0, which requires:

g + a ≥ 0

a ≥ −g

The most critical condition occurs when the piston has maximum downward accel-
eration.

For vertical SHM, if we write the position as y(t) = A cos(ωt) (taking upward as
positive), then:

a(t) = −ω2A cos(ωt)

The maximum downward acceleration is:

amax, down = −ω2A

At the point of losing contact:
−ω2A = −g

ω2A = g

Solving for angular frequency:

ω2 =
g

A
=

9.8

0.1
= 98

ω =
√
98 = 7

√
2 ≈ 9.899 rad/s

Converting to frequency:

f =
ω

2π
=

9.899

2π
≈ 1.575Hz
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Conclusion: The washer will lose contact with the piston when the frequency
reaches approximately 1.58Hz. This occurs at the top of the piston’s motion when
the piston accelerates downward with acceleration equal to g.
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