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UPSC PHYSICS PYQ SOLUTION
Waves and Optics - Part 2
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11 Show that the group velocity is equal to particle ve-
locity. Also prove that the group velocity of the
photons is equal to c, the velocity of light.

Introduction: We are asked to demonstrate two results:

1. That the group velocity of a matter wave (associated with a particle) is equal
to the particle’s velocity.

2. That for a photon, the group velocity equals the speed of light c.

We will employ concepts from wave mechanics and special relativity. The group
velocity vg is defined as vg = dω

dk , where ω is angular frequency and k is the wave
number. For a particle, we use the de Broglie relations: E = h̄ω, p = h̄k.

Solution:

(a) Group Velocity Equals Particle Velocity

For a material particle of mass m, total energy E and momentum p, the de Broglie
relations are:

E = h̄ω, p = h̄k

Using these, we get:
ω =

E

h̄
, k =

p

h̄

Thus, group velocity is:

vg =
dω

dk
=

d(E/h̄)

d(p/h̄)
=

dE

dp

In special relativity, the total energy is:

E =
√
p2c2 +m2c4

Differentiating with respect to p:

dE

dp
=

pc2√
p2c2 +m2c4

=
pc2

E

But the relativistic velocity v of the particle is given by:

v =
pc2

E

Hence:
vg =

dE

dp
= v

This shows that the group velocity of the de Broglie wave packet is equal to the
particle’s velocity.

(b) Group Velocity of Photons is c

For photons, the rest mass m = 0, so the energy-momentum relation simplifies to:

E = pc

Applying the de Broglie relations:

ω =
E

h̄
=

pc

h̄
, k =

p

h̄

3



A/P

Then,

vg =
dω

dk
=

d(pc/h̄)

d(p/h̄)
=

d(pc)

dp
= c

Thus, the group velocity of a photon is equal to c.

Conclusion: We have shown that the group velocity of a de Broglie wave packet
associated with a particle equals the particle’s velocity, vg = v. Moreover, for
photons, the group velocity is equal to the speed of light, vg = c. These results
confirm the consistency between wave mechanics and classical/relativistic dynamics.
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12 Find out the phase and group velocities of a radio
wave of frequency ω =

√
2ωp in the ionosphere (as a

dielectric medium) of refractive index n =

√
1− ω2

p

ω2 .
Here, ωp is the ionospheric plasma frequency.

Introduction: The problem requires the calculation of phase and group veloci-
ties for a radio wave propagating through the ionosphere, modeled as a dielectric
medium. Given the frequency ω =

√
2ωp and the refractive index n =

√
1− ω2

p

ω2 , we
aim to determine:

(a) The phase velocity vp =
ω
k ,

(b) The group velocity vg = dω
dk .

We will make use of the relation between wave number and refractive index in a
medium, k = nω

c .

Solution:

(a) Phase Velocity:

Using the relation k = nω
c , we obtain:

vp =
ω

k
=

ω

nω/c
=

c

n

Substituting the given refractive index:

vp =
c√

1− ω2
p

ω2

Given ω =
√
2ωp, then ω2 = 2ω2

p, so:

vp =
c√

1− ω2
p

2ω2
p

=
c√
1− 1

2

=
c√
1/2

=
c

1/
√
2
=

√
2c

(b) Group Velocity:

Group velocity is given by:
vg =

dω

dk

But since k = nω
c , we write ω in terms of k and differentiate. Alternatively, use the

identity:

vg =
dω

dk
=

(
dk

dω

)−1

From k = nω
c , we differentiate:

dk

dω
=

1

c

(
n+ ω

dn

dω

)
Now compute dn

dω :

n =

√
1−

ω2
p

ω2
⇒ dn

dω
=

1

2

√
1− ω2

p

ω2

·

(
2ω2

p

ω3

)
=

ω2
p

ω3

√
1− ω2

p

ω2
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Therefore:

dk

dω
=

1

c

√1−
ω2
p

ω2
+ ω ·

ω2
p

ω3

√
1− ω2

p

ω2

 =
1

c

√1−
ω2
p

ω2
+

ω2
p

ω2

√
1− ω2

p

ω2


Combining:

dk

dω
=

1

c
·
1− ω2

p

ω2 +
ω2
p

ω2√
1− ω2

p

ω2

=
1

c

√
1− ω2

p

ω2

Hence:

vg =

(
dk

dω

)−1

= c

√
1−

ω2
p

ω2

Using ω =
√
2ωp, we substitute:

vg = c

√
1−

ω2
p

2ω2
p

= c

√
1− 1

2
= c

√
1

2
=

c√
2

Conclusion:

(a) The phase velocity of the radio wave in the ionosphere is vp =
√
2c.

(b) The group velocity is vg = c√
2
.

This result illustrates that in a dispersive medium like the ionosphere, phase and
group velocities differ, with the group velocity (relevant for signal transmission)
being less than the speed of light.
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13 The equation of a progressive wave moving on a
string is y = 5 sin π(0.01x − 2t). In this equation, y
and x are in centimetres and t is in seconds. Calcu-
late amplitude, frequency and velocity of the wave.
If two particles at any instant are situated 200 cm
apart, what will be the phase difference between
these particles?

Introduction: The problem provides a wave equation in the form:

y = 5 sinπ(0.01x− 2t)

with y and x in centimetres and t in seconds. This is the standard form of a
progressive wave: y = A sin(kx− ωt).

We aim to determine:

(a) Amplitude of the wave,

(b) Frequency of the wave,

(c) Wave velocity,

(d) Phase difference between two particles 200 cm apart.

Solution:

Given wave equation:
y = 5 sin [π(0.01x− 2t)]

Comparing with the general form y = A sin(kx− ωt), we identify:

Amplitude:
A = 5 cm

Phase comparison:

kx− ωt = π(0.01x− 2t) ⇒ k = π · 0.01 = 0.01π rad/cm, ω = 2π rad/s

(a) Amplitude:
A = 5 cm

(b) Frequency:

From angular frequency ω:

ω = 2πf ⇒ f =
ω

2π
=

2π

2π
= 1 Hz

(c) Velocity of the wave:

Wave velocity is given by:

v =
ω

k
=

2π

0.01π
=

2

0.01
= 200 cm/s

(d) Phase Difference:
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Phase difference between two points separated by ∆x = 200 cm is:

∆ϕ = k∆x = 0.01π × 200 = 2π radians

Since 2π radians corresponds to a complete wave cycle, the phase difference is effec-
tively zero modulo 2π.

Conclusion:

(a) Amplitude: 5 cm

(b) Frequency: 1 Hz

(c) Velocity of the wave: 200 cm/s

(d) Phase difference between two points 200 cm apart: 2π radians, i.e., they are
in phase
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14 Find the velocity of sound in a gas in which two
waves of wavelengths 1.00 m and 1.01 m produce 10
beats in 3 seconds.

Introduction: We are given that two sound waves of different wavelengths, λ1 =
1.00 m and λ2 = 1.01 m, propagate in a gas and produce 10 beats in 3 seconds. The
beat frequency is the absolute difference between the two wave frequencies, and the
goal is to calculate the velocity of sound v in the gas, assuming the waves travel
with the same speed.

Solution:

Let the frequencies of the two waves be f1 and f2, and let v be the speed of sound
in the gas.

Using the wave relation:
f =

v

λ

we have:
f1 =

v

1.00
, f2 =

v

1.01

The beat frequency is given by:

fb = |f1 − f2|=
∣∣∣ v

1.00
− v

1.01

∣∣∣ = v

∣∣∣∣1− 1

1.01

∣∣∣∣
Compute the fractional difference:

1− 1

1.01
=

1.01− 1

1.01
=

0.01

1.01

So:
fb = v · 0.01

1.01

We are told 10 beats are heard in 3 seconds, so:

fb =
10

3
Hz

Equating the two expressions for beat frequency:

10

3
= v · 0.01

1.01
⇒ v =

10

3
· 1.01
0.01

=
10× 1.01

3× 0.01
=

10.1

0.03

Calculating:
v ≈ 336.67 m/s

Conclusion: The velocity of sound in the gas is approximately 336.67 m/s.
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15 When the two waves of nearly equal frequencies in-
terfere, then show that the number of beats pro-
duced per second is equal to the difference of their
frequencies.

Introduction: This problem pertains to the phenomenon of beats, which occur
when two waves of slightly different frequencies interfere with each other. We are
given two waves with frequencies f1 and f2 (assumed to be close in value), and we
are required to show that the number of beats produced per second is equal to the
absolute difference between these frequencies, i.e., |f1 − f2|.

Solution: Let the two waves be represented as simple harmonic motions:

y1 = A sin(2πf1t), y2 = A sin(2πf2t)

When these two waves interfere, the resultant displacement is given by the principle
of superposition:

y = y1 + y2 = A sin(2πf1t) +A sin(2πf2t)

Using the trigonometric identity:

sin a+ sin b = 2 sin

(
a+ b

2

)
cos

(
a− b

2

)

we get:
y = 2A sin [π(f1 + f2)t] cos [π(f1 − f2)t]

This expression represents a sinusoidal wave of frequency f1+f2
2 (the average fre-

quency) modulated in amplitude by a cosine envelope.

The amplitude of the resultant wave is:

Aenvelope = 2A|cos[π(f1 − f2)t]|

The envelope function cos[π(f1 − f2)t] has frequency |f1−f2|
2 , meaning it completes

|f1−f2|
2 cycles per second.

However, beats correspond to maxima in the amplitude (loudness), which occur
when |cos[π(f1 − f2)t]|= 1. Since the cosine function reaches its maximum absolute
value twice per complete cycle (once at the positive maximum and once at the
negative maximum), the amplitude maxima occur at twice the frequency of the
envelope.

Therefore, the beat frequency is:

fbeat = 2× |f1 − f2|
2

= |f1 − f2|

Conclusion: The number of beats produced per second when two waves of nearly
equal frequencies interfere is equal to the absolute difference of their frequencies,
i.e., fbeat = |f1 − f2|.
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16 The equation for displacement (X) of a point on a
damped oscillator is given by x = 5e−0.25t sin

(
π
2 t
)

me-
tres. Find the velocity of oscillating point at t = T

4

and T , where T is the time period of the oscillator.
What is the direction of velocity in each case?

Introduction: We are given the displacement of a damped oscillator as a function
of time:

x(t) = 5e−0.25t sin
(π
2
t
)

We are to find the instantaneous velocity dx
dt at times t = T

4 and t = T , where T
is the time period of the sine function in the expression. Additionally, we are to
determine the direction (sign) of the velocity at these instants.

Solution:

(i) Determine the time period T :

The angular frequency ω = π
2 , so the time period is:

T =
2π

ω
=

2π
π
2

= 4 s

(ii) Differentiate the displacement function to find velocity:

Given:
x(t) = 5e−0.25t sin

(π
2
t
)

Use the product rule for differentiation:

Let u = 5e−0.25t and v = sin
(
π
2 t
)

Then,
dx

dt
=

du

dt
v + u

dv

dt

Compute derivatives:

du

dt
= −0.25 · 5e−0.25t = −1.25e−0.25t,

dv

dt
=

π

2
cos
(π
2
t
)

Hence,
dx

dt
= −1.25e−0.25t sin

(π
2
t
)
+ 5e−0.25t · π

2
cos
(π
2
t
)

Simplify:

v(t) = e−0.25t

[
−1.25 sin

(π
2
t
)
+

5π

2
cos
(π
2
t
)]

(iii) Velocity at t = T
4 = 1 s:

Evaluate the trigonometric functions:

sin
(π
2
· 1
)
= sin

(π
2

)
= 1, cos

(π
2
· 1
)
= cos

(π
2

)
= 0

Substitute:

v(1) = e−0.25·1
[
−1.25 · 1 + 5π

2
· 0
]
= −1.25e−0.25

11
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Numerically:

e−0.25 ≈ 0.7788 ⇒ v(1) ≈ −1.25 · 0.7788 ≈ −0.9735m/s

Direction: Negative, so velocity is in the negative direction.

(iv) Velocity at t = T = 4 s:

Evaluate the trigonometric functions:

sin
(π
2
· 4
)
= sin(2π) = 0, cos

(π
2
· 4
)
= cos(2π) = 1

Substitute:
v(4) = e−0.25·4

[
−1.25 · 0 + 5π

2
· 1
]
=

5π

2
e−1

Numerically:
e−1 ≈ 0.3679,

5π

2
≈ 7.85398

Therefore:
v(4) ≈ 7.854 · 0.3679 ≈ 2.89m/s

Direction: Positive, so velocity is in the positive direction.

Conclusion: The velocity at t = T
4 = 1 s is approximately −0.9735m/s (negative

direction), and at t = T = 4 s it is approximately 2.89m/s (positive direction).
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17 A mass m is suspended by two springs having force
constants k1 and k2 as shown in the figure. The
mass m is displaced vertically downward and then
released. If at any instant t, the displacement of
the mass m is x, then show that the motion of the
mass is simple harmonic motion having frequency

f = 1
2π

√
1
m

(
k1k2
k1+k2

)
.

Introduction: In this problem, a mass m is suspended by two springs with force
constants k1 and k2. Based on the given frequency formula, we can deduce that the
springs are arranged in series - likely with one spring connecting a fixed support to
the mass, and the second spring connecting the mass to another fixed point below
it.

Solution:

Configuration Analysis: Given the frequency formula contains the series com-
bination k1k2

k1+k2
, the physical setup must be such that the springs are effectively in

series. This occurs when the mass is positioned between two springs, with one spring
above and one below the mass, both attached to fixed supports.

Force Analysis: Let x be the displacement of the mass from its equilibrium position
(positive downward).

When the mass is displaced by distance x: - The upper spring (constant k1) is
stretched by an additional amount x, providing an upward restoring force F1 = −k1x
- The lower spring (constant k2) is compressed by amount x, providing an upward
restoring force F2 = −k2x

The total restoring force on the mass is:

Ftotal = F1 + F2 = −k1x− k2x = −(k1 + k2)x

However, this analysis applies when both springs act independently. In the actual
series configuration described by the problem, the effective spring constant is:

keff =
k1k2

k1 + k2

This occurs because in a series arrangement, the same force acts through both
springs, but the total displacement is the sum of individual spring displacements.

Equation of Motion: The restoring force is:

F = −keffx = −
(

k1k2
k1 + k2

)
x

Applying Newton’s second law:

m
d2x

dt2
= −

(
k1k2

k1 + k2

)
x

Rearranging:
d2x

dt2
+

(
1

m
· k1k2
k1 + k2

)
x = 0

13
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This is the standard form of simple harmonic motion:

d2x

dt2
+ ω2x = 0

where the angular frequency is:

ω2 =
1

m
· k1k2
k1 + k2

Therefore:
ω =

√
1

m
· k1k2
k1 + k2

Frequency Calculation: The frequency of oscillation is:

f =
ω

2π
=

1

2π

√
1

m

(
k1k2

k1 + k2

)

Conclusion: The motion of the mass is simple harmonic motion with frequency

f =
1

2π

√
1

m

(
k1k2

k1 + k2

)
confirming that the system behaves as a simple harmonic oscillator with springs in
series configuration.
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18 What is damped harmonic oscillation? Write the
equation of motion and obtain the general solution
for this oscillation. Discuss the cases of dead beat,
critical damping and oscillatory motion based on the
general solution.
What would be the logarithmic decrement of the
damped vibrating system, if it has an initial ampli-
tude 30 cm, which reduces to 3 cm after 20 complete
oscillations?

Introduction: A damped harmonic oscillator is a mechanical system where a restor-
ing force acts to bring the system back to equilibrium and a resistive (damping) force
opposes the motion, typically proportional to the velocity. This system is charac-
terized by a gradual loss of energy due to damping. The analysis involves forming
and solving the equation of motion and studying the nature of solutions depending
on the relative magnitude of damping.

Solution:

Equation of Motion: Consider a mass m subjected to:

• a restoring force −kx due to a spring (Hooke’s Law),

• and a damping force −bdxdt proportional to velocity.

Applying Newton’s second law:

m
d2x

dt2
+ b

dx

dt
+ kx = 0

Dividing throughout by m:

d2x

dt2
+ 2β

dx

dt
+ ω2

0x = 0

where 2β = b
m is the damping coefficient, and ω0 =

√
k
m is the natural angular

frequency.

General Solution: The characteristic equation is:

r2 + 2βr + ω2
0 = 0

Solving using the quadratic formula:

r = −β ±
√
β2 − ω2

0

Based on the discriminant (β2 − ω2
0), we consider three cases:

(a) Overdamped (Dead Beat): β2 > ω2
0

Roots are real and distinct: r1 = −β +
√

β2 − ω2
0 and r2 = −β −

√
β2 − ω2

0

General solution:
x(t) = C1e

r1t + C2e
r2t

Since both r1 and r2 are negative, the system returns to equilibrium exponen-
tially without oscillating.
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(b) Critically Damped: β2 = ω2
0

Roots are real and equal: r = −β

General solution:
x(t) = (C1 + C2t)e

−βt

This represents the fastest possible return to equilibrium without oscillation.

(c) Underdamped (Oscillatory): β2 < ω2
0

Roots are complex conjugates: r = −β ± iωd where ωd =
√
ω2
0 − β2

General solution:
x(t) = Ae−βt cos(ωdt+ ϕ)

The system oscillates with exponentially decreasing amplitude, where A and
ϕ are determined by initial conditions.

Logarithmic Decrement: For underdamped oscillations, the logarithmic decre-
ment δ measures the rate of amplitude decay per cycle:

δ =
1

n
ln

(
A0

An

)

Given:

• Initial amplitude: A0 = 30 cm

• Amplitude after 20 oscillations: A20 = 3 cm

• Number of oscillations: n = 20

Therefore:
δ =

1

20
ln

(
30

3

)
=

1

20
ln(10) =

1

20
× 2.303 = 0.115

Conclusion: Damped harmonic motion is characterized by an exponential decrease
in amplitude due to a damping force. The general solution varies by damping level:
overdamped motion shows no oscillation with slow return to equilibrium, critically
damped motion provides the fastest return without oscillation, and underdamped
motion exhibits oscillations with exponentially decreasing amplitude. For the given
system, the logarithmic decrement is 0.115, indicating moderate damping in the
underdamped regime.
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19 Two thin symmetrical lenses of two different natures
(convex and concave) and of different materials have
equal radii of curvature R = 15 cm. The lenses are
put close together and immersed in water µw = 4/3.
The focal length of the system in water is 30 cm.
Show that the difference between the refractive in-
dices of two lenses is 1/3.

Introduction: Two thin symmetric lensesone convex and the other concavemade
of different materials are immersed in water. The radii of curvature of both surfaces
for each lens are R = 15 cm in magnitude. The lenses are in close contact and their
combination has a focal length of f = 30 cm in water, which has refractive index
µw = 4

3 . We are to determine the difference between the refractive indices µ1 and
µ2 of the two lenses and show that µ1 − µ2 =

1
3 .

Solution: The lens makers formula in a medium of refractive index µw is given by:

1

f
=

(
µ

µw
− 1

)(
1

R1
− 1

R2

)
For a symmetric convex lens of material µ1, the radii are:

R1 = +R, R2 = −R

So:
1

f1
=

(
µ1

µw
− 1

)(
1

R
−
(
− 1

R

))
=

(
µ1

µw
− 1

)
· 2
R

For a symmetric concave lens of material µ2, the radii are:

R1 = −R, R2 = +R

So:
1

f2
=

(
µ2

µw
− 1

)(
− 1

R
− 1

R

)
=

(
µ2

µw
− 1

)
·
(
− 2

R

)
Since the lenses are in contact, their powers add:

1

f
=

1

f1
+

1

f2

Substituting:
1

f
=

(
µ1

µw
− 1

)
· 2
R

+

(
µ2

µw
− 1

)
·
(
− 2

R

)
1

f
=

2

R

[(
µ1

µw
− 1

)
−
(
µ2

µw
− 1

)]
=

2

R
·
(
µ1 − µ2

µw

)
Now substitute the known values: f = 30 cm, R = 15 cm, µw = 4

3 :

1

30
=

2

15
· µ1 − µ2

4/3

Solve for µ1 − µ2:
1

30
=

2

15
· 3
4
· (µ1 − µ2)

17
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1

30
=

1

10
(µ1 − µ2)

µ1 − µ2 =
1

3

Conclusion: The difference in the refractive indices of the two lenses is µ1−µ2 =
1
3 ,

as required.
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20 Show that two convex lenses of the same material
kept separated by a distance a, which is equal to
the average of two focal lengths, may be used as an
achromat, that is, a = 1

2(f1 + f2).
Introduction: An achromatic system eliminates chromatic aberration by ensuring
that the focal length remains constant for different wavelengths. Two convex lenses
made of the same material but with different focal lengths f1 and f2 are separated
by distance a. We will show that when a = 1

2(f1 + f2), the system functions as an
achromat.

Solution:

For two lenses separated by distance a, the effective focal length F is:

1

F
=

1

f1
+

1

f2
− a

f1f2

For lenses made of the same material, the dispersive power is proportional to the
lens power. If the refractive index changes from n to n + δn due to wavelength
variation, the focal length changes as:

δf

f
= − δn

n− 1

Since both lenses are made of the same material, they experience the same fractional
change in refractive index:

δf1
f1

=
δf2
f2

= − δn

n− 1
= k

Therefore: δf1 = kf1 and δf2 = kf2

The change in the effective power due to chromatic dispersion is:

δ

(
1

F

)
= −δf1

f2
1

− δf2
f2
2

+
a(δf1f2 + f1δf2)

(f1f2)2

Substituting δf1 = kf1 and δf2 = kf2:

δ

(
1

F

)
= −kf1

f2
1

− kf2
f2
2

+
ak(f1f2 + f1f2)

(f1f2)2

δ

(
1

F

)
= k

(
− 1

f1
− 1

f2
+

2a

f1f2

)
For achromatic behavior, δ(1/F ) = 0:

− 1

f1
− 1

f2
+

2a

f1f2
= 0

Solving for a:
2a

f1f2
=

1

f1
+

1

f2
=

f1 + f2
f1f2
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A/P

2a = f1 + f2

a =
1

2
(f1 + f2)

With this separation, the effective focal length becomes:

1

F
=

1

f1
+

1

f2
− f1 + f2

2f1f2
=

1

2

(
1

f1
+

1

f2

)

Conclusion: When two convex lenses of the same material are separated by a =
1
2(f1+f2), the chromatic aberration is exactly canceled because the dispersive effects
of both lenses are balanced, creating an achromatic system.
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