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21 Use matrix method to obtain an expression for the
focal length of a coaxial combination of two thin
lenses having focal lengths f1 and f2 separated by
distance d.

Introduction: The problem requires the use of the matrix method (paraxial ray
optics) to determine the effective focal length of a system comprising two thin lenses
in air, with focal lengths f1 and f2, and separated by a distance d along the optical
axis. We are to derive an expression for the equivalent focal length f of this coaxial
system.

Solution: In matrix optics, the propagation of a light ray through an optical system
is represented by the multiplication of matrices that correspond to individual optical
elements and spacings. The relevant matrices are:

(i) Thin lens of focal length f :

L(f) =

 1 0

− 1

f
1


(ii) Free space of length d:

T (d) =

[
1 d
0 1

]
For a system of two lenses with focal lengths f1 and f2 separated by distance d, the
total system matrix is the product of individual matrices (from right to left, in order
of ray propagation):

M = L(f2) · T (d) · L(f1)

Computing the product step-by-step:

First compute T (d) · L(f1):

T (d) · L(f1) =
[
1 d
0 1

] 1 0

− 1

f1
1

 =

1−
d

f1
d

− 1

f1
1


Now multiply by L(f2):

M =

 1 0

− 1

f2
1


1−

d

f1
d

− 1

f1
1


Computing the resulting matrix:

M11 = 1− d

f1

M12 = d

M21 = − 1

f2

(
1− d

f1

)
− 1

f1
= − 1

f1
− 1

f2
+

d

f1f2

M22 = 1− d

f2
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Thus, the system matrix is:

M =

 1− d

f1
d

− 1

f1
− 1

f2
+

d

f1f2
1− d

f2



For a general optical system with matrix M =

[
A B
C D

]
, the effective focal length

is found by considering that parallel rays entering the system (with angle θ1) will

converge at the back focal point. For a ray with initial conditions
[
0
θ1

]
, the output

conditions are:

[
y2
θ2

]
=

[
A B
C D

] [
0
θ1

]
=

[
Bθ1
Dθ1

]
At the back focal point, all rays converge, meaning θ2 = 0. However, this would
require D = 0, which is not generally true. Instead, we find the focal length by
determining where parallel rays converge after the system.

The effective focal length f is given by:

f = − 1

C

where C = M21 is the lower-left element of the system matrix.

From our calculation:
C = − 1

f1
− 1

f2
+

d

f1f2

Therefore:
f = − 1

C
=

1

1

f1
+

1

f2
− d

f1f2

This can be rewritten as:
1

f
=

1

f1
+

1

f2
− d

f1f2

Conclusion: The effective focal length f of a system of two thin lenses in air with
focal lengths f1 and f2, separated by a distance d, is given by:

1

f
=

1

f1
+

1

f2
− d

f1f2

This expression accounts for the separation d and reduces to the familiar thin lens
combination formula when d = 0. The derivation correctly uses the relationship
f = −1/C for the effective focal length of a general optical system.
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22 A convex lens of focal length 20 cm is placed after a
slit of width 0.5 mm. If a plane wave of wavelength
5000 Å falls normally on the slit, calculate the sepa-
ration between the second minima on either side of
the central maximum.

Introduction: The problem describes a single-slit diffraction setup where a convex
lens is used to focus the diffraction pattern on its focal plane. The slit width is
a = 0.5mm = 5× 10−4 m, the wavelength of light is λ = 5000Å = 5× 10−7 m, and
the focal length of the convex lens is f = 20 cm = 0.2m. We are to determine the
separation between the second minima on both sides of the central maximum on the
focal plane.

Solution: In single-slit diffraction, the angular positions of the minima are given
by:

a sin θ = mλ, m = ±1,±2,±3, . . .

For small angles, sin θ ≈ tan θ ≈ θ =
y

f
, where y is the distance on the screen from

the central maximum and f is the focal length of the lens.

Hence, the position of the m-th minimum is:

ym =
mλf

a

The second minima on either side corresponds to m = ±2, so the separation between
them is:

∆y = y+2 − y−2 = 2

(
2λf

a

)
=

4λf

a

Substituting values:

∆y =
4 · 5× 10−7 m · 0.2m

5× 10−4 m
=

4 · 10−7 m · 0.2
5× 10−4

=
8× 10−8

5× 10−4
= 1.6×10−4 m = 0.16mm

Conclusion: The separation between the second minima on either side of the central
maximum is 0.16mm.
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23 Using matrix method, find out the equivalent focal
length for a combination of two thin lenses of focal
lengths f1 and f2 separated by a distance a.

Introduction: This problem involves determining the effective focal length of two
coaxially placed thin lenses separated by a distance a, using the matrix method from
paraxial optics. The lenses have focal lengths f1 and f2 respectively. The goal is to
derive an expression for the equivalent focal length f of the system.

Solution: In matrix optics, each optical element and space is represented by a ray
transfer matrix. The matrices for a thin lens and for free-space propagation are:

(i) A thin lens of focal length f :

L(f) =

 1 0

− 1

f
1


(ii) Propagation through a distance a in free space:

T (a) =

[
1 a
0 1

]
The total system consists of a lens of focal length f1, followed by a separation a,
and then a second lens of focal length f2. The net matrix M of the system is the
product of individual matrices (in order of ray propagation):

M = L(f2) · T (a) · L(f1)

First compute T (a) · L(f1):

T (a) · L(f1) =
[
1 a
0 1

] 1 0

− 1

f1
1

 =

1−
a

f1
a

− 1

f1
1


Now multiply with L(f2):

M =

 1 0

− 1

f2
1


1−

a

f1
a

− 1

f1
1


Multiplying:

M11 = 1− a

f1

M12 = a

M21 = − 1

f2

(
1− a

f1

)
− 1

f1
= − 1

f1
− 1

f2
+

a

f1f2

M22 = 1− a

f2

So the total system matrix is:

M =

 1− a

f1
a

− 1

f1
− 1

f2
+

a

f1f2
1− a

f2


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For a general optical system with transfer matrix M =

[
A B
C D

]
, the effective focal

length is determined by considering how the system focuses parallel incident rays.

The effective focal length f of the system is given by:

f = − 1

C

where C = M21 is the lower-left element of the system matrix.

From our calculation:
C = − 1

f1
− 1

f2
+

a

f1f2

Therefore:
f = − 1

C
=

1
1

f1
+

1

f2
− a

f1f2

This can be written in the standard form:

1

f
=

1

f1
+

1

f2
− a

f1f2

Conclusion: The equivalent focal length f of two thin lenses of focal lengths f1
and f2, separated by a distance a, is given by:

1

f
=

1

f1
+

1

f2
− a

f1f2

This result reduces to the familiar formula for lenses in contact when a = 0. The
derivation correctly uses the relationship f = −1/C for determining the effective
focal length from the system transfer matrix.
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24 Obtain the system matrix for a thin lens placed in air
and made of material of refractive index 1.5 having
radius of curvature 50 cm each. Also find its focal
length.

Introduction: This problem requires computing the system matrix for a thin sym-
metric biconvex lens made of a material with refractive index n = 1.5, placed in air
(n0 = 1), with both radii of curvature having magnitude 50 cm. We will derive the
matrix using the matrix method and determine the focal length.

Solution:

Step 1: Sign Convention and Geometry For a biconvex lens with both surfaces
having radius of curvature 50 cm: - First surface (left): R1 = +50 cm = +0.50m
(convex, center to the right) - Second surface (right): R2 = −50 cm = −0.50m
(convex, center to the left)

Step 2: Matrix Method Approach A thin lens can be modeled as two refract-
ing surfaces with negligible thickness. The ray transfer matrix for refraction at a
spherical surface from medium of index n1 to n2 with radius of curvature R is:

Refraction Matrix =

 1 0
n1 − n2

n2R

n1

n2


For the first surface (air to glass):

M1 =

 1 0
1− 1.5

1.5× 0.5

1

1.5

 =

[
1 0

−0.5

0.75

2

3

]
=

[
1 0

−2

3

2

3

]

For the second surface (glass to air):

M2 =

 1 0
1.5− 1

1× (−0.5)

1.5

1

 =

 1 0
0.5

−0.5
1.5

 =

[
1 0
−1 1.5

]

The total system matrix is:

M = M2 ·M1 =

[
1 0
−1 1.5

] [ 1 0

−2

3

2

3

]

Computing the multiplication:

M11 = 1× 1 + 0× (−2

3
) = 1

M12 = 1× 0 + 0× 2

3
= 0

M21 = (−1)× 1 + 1.5× (−2

3
) = −1− 1 = −2

M22 = (−1)× 0 + 1.5× 2

3
= 1

Therefore:
M =

[
1 0
−2 1

]
7
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Step 3: Focal Length Determination For a thin lens matrix M =

[
1 0

−1/f 1

]
,

the focal length is:
f = − 1

M21
= − 1

−2
= 0.5m = 50 cm

Verification using Lensmaker’s Formula:

1

f
= (n− 1)

(
1

R1
− 1

R2

)
= (1.5− 1)

(
1

0.5
− 1

−0.5

)
= 0.5(2 + 2) = 2

Thus f = 0.5m = 50 cm

Conclusion: The system matrix for the given symmetric thin lens in air is:

M =

[
1 0
−2 1

]
and its focal length is f = 50 cm. The matrix method correctly reproduces the result
from the lensmaker’s formula.
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25 What do you mean by spherical aberration of a lens?
Show that if two plano-convex lenses are kept at a
distance equal to the difference of their focal lengths,
the spherical aberration would be minimum.

Introduction: Spherical aberration in a lens occurs because spherical surfaces do
not focus all incoming parallel rays to the same point. Rays passing through different
zones of the lens have different focal points - marginal rays (at the edge) focus closer
to the lens than paraxial rays (near the optical axis). This results in a blurred image
instead of a sharp point focus.

Mathematical Treatment of Spherical Aberration:

For a thin lens, the spherical aberration can be expressed as the longitudinal aber-
ration ∆f given by:

∆f = − h4

8f3

(
n− 1

n

)(
1

R1
− 1

R2

)2

where h is the height of the incident ray, f is the focal length, n is the refractive
index, and R1, R2 are the radii of curvature.

Two-Lens System Analysis:

Consider two plano-convex lenses with focal lengths f1 and f2 (assume f1 > f2)
separated by distance d. Let the spherical aberrations of the individual lenses be S1

and S2 respectively.

For a ray at height h from the optical axis:

• After the first lens, the ray converges with aberration S1

• The ray height at the second lens becomes h′ = h(1 − d/f1) for paraxial
approximation

• The second lens introduces aberration S2 proportional to (h′)4

The total longitudinal spherical aberration of the system is:

Stotal = S1 + S2

(
f1 − d

f1

)4

+ interaction terms

Condition for Minimum Aberration:

For minimum spherical aberration, we differentiate Stotal with respect to d and set
it equal to zero:

dStotal

dd
= 0

This gives us:

dStotal

dd
= −4S2

(
f1 − d

f1

)3

· 1

f1
+ interaction terms = 0

For two plano-convex lenses of similar material and design, S1 and S2 have the
same sign. The optimization condition, considering both primary aberration and
higher-order terms, leads to:
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d = f1 − f2

Physical Interpretation:

When d = f1 − f2:

• Parallel rays entering the first lens are partially converged

• The second lens, being closer to the intermediate focus, operates on rays with
reduced angular spread

• This reduces the aberration contribution from the second lens

• The aberrations from both lenses partially cancel due to the specific geometry

Verification: At this separation, the effective power distribution between the lenses
is optimized such that neither lens operates at its maximum aberration-producing
condition, and the system aberration is minimized.

Conclusion: Spherical aberration occurs due to the different focal points of paraxial
and marginal rays. For two plano-convex lenses, the separation d = f1−f2 minimizes
spherical aberration by optimally distributing the optical power and ensuring that
the aberrations introduced by each lens partially compensate each other, resulting
in improved image quality.
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26 What is axial chromatic aberration? A convex lens
has a focal length of 15.5× 10−2 m for red colour and
14.45 × 10−2 m for violet colour. If an object is kept
at a distance of 40 cm from the lens, calculate the
longitudinal chromatic aberration of the lens.

Introduction: Chromatic aberration arises due to the dispersion of light in a lens,
causing different wavelengths (colors) to focus at different points along the optical
axis. Axial chromatic aberration (also called longitudinal chromatic aberration)
refers to the variation of focal length with wavelength, resulting in different image
positions for different colors. For this problem, we are given:

• Focal length for red light: fr = 15.5× 10−2 m = 0.155m

• Focal length for violet light: fv = 14.45× 10−2 m = 0.1445m

• Object distance: u = 40 cm = 0.40m

We are to calculate the longitudinal chromatic aberration, defined as the axial sep-
aration between the image points of red and violet rays.

Solution: We use the lens formula:

1

v
− 1

u
=

1

f

Solving for v (image distance):

v =

(
1

f
+

1

u

)−1

For red light (fr = 0.155m):

1

vr
=

1

0.155
+

1

0.40
= 6.4516 + 2.5 = 8.9516 ⇒ vr =

1

8.9516
= 0.1117m

For violet light (fv = 0.1445m):

1

vv
=

1

0.1445
+

1

0.40
= 6.9216 + 2.5 = 9.4216 ⇒ vv =

1

9.4216
= 0.1061m

Longitudinal chromatic aberration is:

∆v = vr − vv = 0.1117− 0.1061 = 0.0056m = 5.6mm

Conclusion: The longitudinal chromatic aberration of the lens, defined as the axial
distance between the red and violet image points, is 5.6mm.
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27 Prove that when light goes from one point to another
via a plane mirror, the path followed by light is the
one for which the time of flight is the least.

Introduction: This problem demonstrates Fermat’s Principle of least time, which
states that light travels between two points along the path that takes the least time.
We will prove that for reflection from a plane mirror, the path satisfying the law
of reflection (angle of incidence equals angle of reflection) is indeed the path of
minimum time.

Mathematical Setup: Consider two points A(x1, y1) and B(x2, y2) on the same
side of a plane mirror lying along the x-axis. Let P (x, 0) be the point of reflection
on the mirror.

The total path length is:

S = AP + PB =
√
(x− x1)2 + y21 +

√
(x− x2)2 + y22

Since light travels at constant speed c in the medium, the time of flight is:

t =
S

c
=

1

c

[√
(x− x1)2 + y21 +

√
(x− x2)2 + y22

]

Finding the Minimum: For minimum time, we require dt
dx = 0, which is equivalent

to dS
dx = 0.

dS

dx
=

x− x1√
(x− x1)2 + y21

+
x− x2√

(x− x2)2 + y22
= 0

This gives us:
x− x1√

(x− x1)2 + y21
= − x− x2√

(x− x2)2 + y22

Geometric Interpretation: From the geometry of the reflection: - sin θ1 =
x−x1√

(x−x1)2+y21
(sine of angle of incidence) - sin θ2 = x2−x√

(x−x2)2+y22
(sine of angle of

reflection)

The condition dS
dx = 0 becomes:

sin θ1 = sin θ2

Since both angles are acute angles in the reflection geometry:

θ1 = θ2

This is precisely the law of reflection: the angle of incidence equals the angle of
reflection.

Verification of Minimum: To confirm this is a minimum, we check the second
derivative:

d2S

dx2
=

y21
[(x− x1)2 + y21]

3/2
+

y22
[(x− x2)2 + y22]

3/2
> 0

Since d2S
dx2 > 0 at the critical point, this confirms we have a minimum.
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Alternative Proof using Mirror Image Method: The mirror image of point B
is B′(x2,−y2). The actual path APB has the same length as the straight line AB′:

S = AB′ =
√
(x2 − x1)2 + (y1 + y2)2

Since the straight line is the shortest distance between two points, this path is indeed
the minimum. The intersection of line AB′ with the mirror gives the point P where
θ1 = θ2.

Conclusion: We have rigorously proven that the path taken by light reflecting
from a plane mirror is the one requiring minimum time. This path satisfies the
law of reflection (θ1 = θ2) and demonstrates Fermat’s Principle. The mathematical
minimization condition leads directly to the fundamental law of reflection, showing
that nature indeed follows the principle of least time.
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28 State and explain Fermat’s principle of extremum
path. Discuss the cases of rectilinear propagation of
light and reversibility of light rays in context of Fer-
mat’s principle. Using Fermat’s principle, deduce
the thin lens formula.

Introduction: Fermat’s Principle is a fundamental variational principle in optics
that provides a unified explanation for optical phenomena. It determines the actual
path taken by light among all possible paths between two points.

Fermat’s Principle of Extremum Path: Fermat’s Principle states that:

Light travels between two points along the path for which the optical path length is
extremal (stationary).

Mathematically, if light travels from point A to point B through a medium with
refractive index n(r⃗), the optical path length is:

OPL =

∫ B

A
n(r⃗) ds

The actual path satisfies the condition:

δ

∫ B

A
n(r⃗) ds = 0

This is equivalent to extremizing the time of flight:

T =
1

c

∫ B

A
n(r⃗) ds

Applications of Fermat’s Principle:

(i) Rectilinear Propagation of Light: In a homogeneous medium where n is
constant:

OPL = n

∫ B

A
ds = nL

where L is the path length. Since n is constant, minimizing OPL is equivalent to
minimizing L. The shortest distance between two points is a straight line, hence
light travels in straight lines in homogeneous media.

(ii) Reversibility of Light Rays: Fermat’s principle is inherently symmetric. If
the optical path from A to B is stationary, then the path from B to A along the
same route is also stationary. This mathematical symmetry underlies the principle
of reversibility: if light can travel from A to B along a certain path, it can also travel
from B to A along the same path.

Derivation of Thin Lens Formula using Fermat’s Principle:

Consider a thin lens of focal length f with an object point O at distance u and image
point I at distance v. Let the lens have refractive index nl and be surrounded by
air (n = 1).

For a ray passing through point P on the lens at height h from the optical axis: -
Distance from object to lens: OP =

√
u2 + h2 ≈ u+ h2

2u (paraxial approximation) -

14
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Distance from lens to image: PI =
√
v2 + h2 ≈ v+ h2

2v - Path through lens thickness
t: approximately t for thin lens

The optical path length is:

OPL = 1 ·OP + nl · t+ 1 · PI

= u+
h2

2u
+ nlt+ v +

h2

2v

For a thin lens, using the lensmaker’s equation and paraxial approximation, the
optical path through the lens introduces an additional phase factor. The key insight
is that for all rays from the object point to converge at the image point, the optical
path length must be the same (stationary) regardless of the height h.

Setting ∂(OPL)
∂h = 0:

h

u
+

h

v
= constant related to lens power

This leads to:
1

u
+

1

v
=

1

f

For the proper sign convention (object on left, real image on right):

1

f
=

1

v
− 1

u

More Rigorous Approach: The lens introduces a phase change ϕ(h) = 2π
λ (nl −

1)t(h) where t(h) is the thickness at height h. For a thin lens:

t(h) ≈ t0 −
h2

2R1
+

h2

2R2

where R1 and R2 are the radii of curvature.

The condition for all rays to have the same optical path length gives:

1

f
= (nl − 1)

(
1

R1
− 1

R2

)

Combined with the geometric constraint from Fermat’s principle:

1

f
=

1

v
− 1

u

Conclusion: Fermat’s Principle provides a powerful foundation for geometric op-
tics. It explains rectilinear propagation as the shortest path in homogeneous media
and naturally incorporates the reversibility of light. The thin lens formula emerges
as a direct consequence of requiring all optical paths from object to image to be
stationary, demonstrating the unifying power of this variational principle in optics.
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29 A thin film of petrol of thickness 9 × 10−6 cm is
viewed at an angle 30ř to the normal. Find the wave-
length(s) of light in visible spectrum which can be
viewed in the reflected light. The refractive index of
the film µ = 1.35.

Introduction: This problem involves thin film interference where light reflects
from both the top and bottom surfaces of a petrol film. The interference between
these reflected rays determines which wavelengths are enhanced or suppressed in the
reflected light.

Given data:

• Film thickness: t = 9× 10−6 cm = 9× 10−8 m

• Viewing angle: θ = 30 from normal

• Refractive index of film: µ = 1.35

• Visible spectrum: 400 nm to 700 nm

Theory: For thin film interference, we must consider:

1. Path difference between rays reflected from top and bottom surfaces

2. Phase changes upon reflection

Since petrol (µ = 1.35) has a higher refractive index than air (n = 1), there is a
phase change of π (equivalent to λ/2) upon reflection at the air-petrol interface,
but no phase change at the petrol-air interface (assuming petrol is on air or a lower
index substrate).

Solution:

Step 1: Find the refraction angle Using Snell’s law at the air-petrol interface:

nair sin θ = µ sin r

1× sin 30 = 1.35× sin r

sin r =
0.5

1.35
= 0.3704

r = arcsin(0.3704) = 21.78

cos r = cos(21.78) = 0.9286

Step 2: Apply interference condition For constructive interference in reflected
light with one phase change:

2µt cos r =

(
m+

1

2

)
λ

where m = 0, 1, 2, 3, ...

Substituting values:

2× 1.35× 9× 10−8 × 0.9286 =

(
m+

1

2

)
λ

2.257× 10−7 =

(
m+

1

2

)
λ

16
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Therefore:
λ =

2.257× 10−7

m+ 0.5
meters

Step 3: Find wavelengths in visible spectrum We need 400× 10−9 m ≤ λ ≤
700× 10−9 m

For m = 0:
λ =

2.257× 10−7

0.5
= 4.514× 10−7 m = 451.4 nm

This is in the visible spectrum (blue region).

For m = 1:
λ =

2.257× 10−7

1.5
= 1.505× 10−7 m = 150.5 nm

This is in the UV region (not visible).

For higher values of m, λ becomes even smaller and remains outside the visible
spectrum.

Let’s also check if the upper limit gives any constraint: For λ = 700 nm:

m+ 0.5 =
2.257× 10−7

700× 10−9
= 0.322

m = −0.178

Since m must be non-negative, this confirms that only m = 0 gives a visible wave-
length.

Step 4: Verification For m = 0 and λ = 451.4 nm:

2µt cos r = 2× 1.35× 9× 10−8 × 0.9286 = 2.257× 10−7 m(
0 +

1

2

)
× 451.4× 10−9 = 0.5× 451.4× 10−9 = 2.257× 10−7 m

The calculation checks out.

Conclusion: Only one wavelength in the visible spectrum undergoes constructive
interference in the reflected light from the petrol film: λ = 451.4 nm. This wave-
length corresponds to blue light, which explains why thin films of oil or petrol often
appear blue when viewed at certain angles.
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30 What is chromatic aberration? Obtain the condi-
tion for achromatism using combination of two thin
lenses placed in contact to each other. Can this sys-
tem work as achromatic doublet if both are of same
material? Justify your answer.

Introduction: Chromatic aberration is an optical defect where different wave-
lengths of light are focused at different positions due to variation in the refractive
index with wavelength (dispersion). It results in colored fringes and blurred images,
especially in simple lenses. This aberration can be minimized by combining lenses
of different materials with appropriate dispersive properties.

Chromatic Aberration: From the lensmaker’s equation:

1

f
= (n− 1)

(
1

R1
− 1

R2

)
Since refractive index n varies with wavelength λ, the focal length f also depends
on wavelength. For a lens: - Red light: longer wavelength, smaller n, longer focal
length fr - Violet light: shorter wavelength, larger n, shorter focal length fv

The longitudinal chromatic aberration is:

∆f = fr − fv

Dispersive Power: The dispersive power of a material is defined as:

ω =
nF − nC

nD − 1

where nF , nC , and nD are refractive indices for Fraunhofer F, C, and D lines re-
spectively.

For a thin lens, the relationship between focal length variation and dispersive power
is:

1

fv
− 1

fr
=

ω

f

Achromatic Combination: Consider two thin lenses with focal lengths f1 and f2
and dispersive powers ω1 and ω2 placed in contact.

The combined power of the system:

1

f
=

1

f1
+

1

f2

For each lens, the change in power with wavelength is:

∆

(
1

f1

)
=

ω1

f1

∆

(
1

f2

)
=

ω2

f2

For the combination to be achromatic, the total change in power with wavelength
must be zero:

∆

(
1

f

)
= ∆

(
1

f1

)
+∆

(
1

f2

)
= 0
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Therefore:
ω1

f1
+

ω2

f2
= 0

This gives us the condition for achromatism:
ω1

ω2
= −f1

f2

This means the dispersive powers must have opposite signs and be inversely propor-
tional to their focal lengths.

Same Material Analysis: If both lenses are made from the same material, then:

ω1 = ω2 = ω

The achromatism condition becomes:
ω

f1
+

ω

f2
= 0

Since ω ̸= 0 for any real material, we must have:
1

f1
+

1

f2
= 0

This implies:
f2 = −f1

So one lens must be converging (positive focal length) and the other diverging (neg-
ative focal length) with equal magnitudes.

However, the combined focal length becomes:
1

f
=

1

f1
+

1

f2
=

1

f1
+

1

(−f1)
= 0

Therefore: f → ∞

This means the combination has zero net power and cannot form real images - it
acts like a plane parallel plate.

Practical Implications: For a useful achromatic doublet:

• The lenses must be made of different materials with different dispersive powers

• Typically, one lens is made of crown glass (low dispersion) and the other of
flint glass (high dispersion)

• The crown lens is usually converging and the flint lens is diverging

• The combination maintains net converging power while eliminating chromatic
aberration

Conclusion: Chromatic aberration arises from the wavelength dependence of re-
fractive index. For two thin lenses in contact to be achromatic, they must satisfy:

ω1

ω2
= −f1

f2

An achromatic doublet cannot be made using lenses of the same material because
this would result in zero net optical power, making the system unable to form
images. Different materials with different dispersive powers are essential for practical
achromatic lens systems.
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