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UPSC PHYSICS PYQ SOLUTION
Waves and Optics - Part 3
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31 Obtain the system matrix for a thick lens and derive
the thin lens formula.

Introduction: A thick lens is analyzed using ray transfer matrices (ABCD matri-
ces) in geometric optics. The system consists of three sequential operations: refrac-
tion at the first surface, propagation through the lens material, and refraction at the
second surface. We use the paraxial approximation and establish sign conventions
where distances are positive to the right of surfaces and radii are positive if centers
of curvature lie to the right.

Given Parameters:

• n: refractive index of the lens material

• R1, R2: radii of curvature of first and second surfaces

• d: thickness of the lens along the optical axis

• Medium: air (refractive index = 1) on both sides

Solution:

Individual Matrix Elements

(i) Refraction at first surface (air to lens): The refraction matrix for a spherical
surface is:

M1 =

[
1 0

−n2−n1
n2R1

n1
n2

]
=

[
1 0

−n−1
nR1

1
n

]
(ii) Translation through lens material:

M2 =

[
1 d

n
0 1

]
(iii) Refraction at second surface (lens to air):

M3 =

[
1 0

−1−n
R2

n

]
=

[
1 0

n−1
R2

n

]
System Matrix for Thick Lens

The overall system matrix is:

M = M3 ·M2 ·M1

First, calculate M2 ·M1:

M2M1 =

[
1 d

n
0 1

] [
1 0

−n−1
nR1

1
n

]
=

[
1− d(n−1)

n2R1

d
n2

−n−1
nR1

1
n

]

Now multiply by M3:

M = M3 · (M2M1) =

[
1 0

n−1
R2

n

] [
1− d(n−1)

n2R1

d
n2

−n−1
nR1

1
n

]

Performing the matrix multiplication:

M =

[
A B
C D

]
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where:
A = 1− d(n− 1)

n2R1

B =
d

n2

C =
n− 1

R2

(
1− d(n− 1)

n2R1

)
− n · n− 1

nR1

C = (n− 1)

(
1

R2
− 1

R1

)
− d(n− 1)2

n2R1R2

D =
d(n− 1)

nR2
+ 1

Thin Lens Limit

For a thin lens, d → 0, so the system matrix becomes:

Mthin =

[
1 0

(n− 1)
(

1
R2

− 1
R1

)
1

]

Derivation of Thin Lens Formula

For a thin lens, the ABCD matrix relates object and image positions. If an object
is at distance s from the lens and the image forms at distance s′, then:

[
y′

θ′

]
=

[
1 s′

0 1

] [
1 0
− 1

f 1

] [
1 s
0 1

] [
y
θ

]

where 1
f = (n− 1)

(
1
R1

− 1
R2

)
from the lens-maker’s formula.

For an object ray parallel to the axis (θ = 0), the combined matrix gives:[
1 s′

0 1

] [
1 0
− 1

f 1

] [
1 s
0 1

]
=

[
1− s′

f s+ s′ − ss′

f

− 1
f 1− s

f

]

For the ray to converge to a point (image), the (1,2) element must be zero:

s+ s′ − ss′

f
= 0

Dividing by ss′:
1

s′
+

1

s
=

1

f

This is the thin lens formula.

Conclusion: The thick lens system matrix accounts for finite thickness through
three matrix operations. In the thin lens limit, we obtain both the lens-maker’s
formula:

1

f
= (n− 1)

(
1

R1
− 1

R2

)
and the thin lens formula:

1

f
=

1

s
+

1

s′

where s is the object distance, s′ is the image distance, and f is the focal length.
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32 An optical beam of spectral width 7.5 GHz at wave-
length λ = 600 nm is incident normally on Fabry-
Perot etalon of thickness 100 mm. Taking refractive
index unity, find the number of axial modes which
can be supported by the etalon.

Introduction: We are given a Fabry-Perot etalon of thickness L = 100mm = 0.1m
and refractive index n = 1. An optical beam of central wavelength λ = 600 nm and
spectral width ∆ν = 7.5GHz is incident normally. The problem asks to determine
the number of axial (longitudinal) modes that can be supported by the etalon within
this spectral width. Axial modes in a Fabry-Perot cavity are separated by the free
spectral range (FSR), which is determined by the cavity geometry and refractive
index.

Solution:

The free spectral range (FSR) of a Fabry-Perot etalon is given by:

FSR =
c

2nL

where:

• c = 3× 108 m/s (speed of light),

• n = 1 (refractive index),

• L = 0.1m (thickness of the etalon).

Substituting values:

FSR =
3× 108

2× 1× 0.1
=

3× 108

0.2
= 1.5× 109 Hz = 1.5GHz

The number of axial modes N that can be supported within the spectral width
∆ν = 7.5GHz is:

N =
∆ν

FSR
=

7.5GHz
1.5GHz

= 5

Conclusion: The Fabry-Perot etalon of thickness 100mm and refractive index 1
can support 5 axial modes for an incident beam of spectral width 7.5GHz centered
at λ = 600 nm.
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33 Describe Michelson interferometer for evaluation of
coherence length of an optical beam. Calculate co-
herence length of a light beam of wavelength 600 nm
with spectral width of 0.01 nm.

Introduction: The Michelson interferometer is an optical instrument used to mea-
sure interference patterns by splitting and recombining a beam of light. It is particu-
larly useful for evaluating the coherence properties of light, including the coherence
length, which characterizes the maximum path difference over which interference
fringes remain visible. The coherence length is inversely related to the spectral
width of the source. We are given a light beam with central wavelength λ = 600 nm
and spectral width ∆λ = 0.01nm, and we are to compute its coherence length.

Solution:

Michelson Interferometer Description: The Michelson interferometer consists
of:

• A beam splitter that divides the incoming light into two perpendicular beams

• Two mirrors: one fixed (M1) and one movable (M2) that reflect the beams
back

• A detector where the beams recombine to produce interference fringes

Coherence Length Evaluation Procedure:

• The optical path difference (OPD) between the two arms is: OPD = 2(d_2 -
d_1), where d_1 and d_2 are the distances from beam splitter to mirrors M1
and M2 respectively

• As the movable mirror M2 is displaced, the OPD changes, causing the inter-
ference pattern to shift

• The fringe visibility (contrast) is given by: V = (I_max - I_min)/(I_max +
I_min)

• For a source with finite spectral width, different wavelength components within
the spectrum acquire different phase differences as OPD increases, leading to
progressive loss of fringe visibility

• The coherence length Lc is defined as the OPD at which fringe visibility drops
to zero (or practically becomes unobservable)

• Experimentally, by gradually increasing the mirror displacement and moni-
toring fringe visibility, one can determine the coherence length when fringes
disappear

• This occurs because waves with different wavelengths within the spectral width
∆λ go in and out of phase as the path difference increases

Coherence Length Calculation: The coherence length for a source with spectral
width ∆λ is:

Lc =
λ2

∆λ

This formula arises from the condition that phase differences between extreme wave-
lengths in the spectrum become 2π when the path difference equals the coherence
length.
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Given:

• λ = 600 nm = 600× 10−9 m

• ∆λ = 0.01 nm = 0.01× 10−9 m

Substitute into the formula:

Lc =
(600× 10−9)2

0.01× 10−9
=

360× 10−18

0.01× 10−9
=

360× 10−18

10−11
= 36× 10−6 m = 36µm

Conclusion: The Michelson interferometer enables measurement of coherence length
by observing how fringe visibility decreases with increasing optical path difference
due to the finite spectral width of the source. The coherence length corresponds
to the maximum OPD at which interference fringes remain observable. For a light
beam of wavelength 600 nm and spectral width 0.01 nm, the coherence length is 36
micrometers.
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34 Show that two light beams polarized in perpendicu-
lar directions will not interfere.

Introduction: Interference of light arises from the superposition of coherent electric
fields. For two beams to produce observable interference fringes, their electric field
vectors must have a non-zero projection onto each other. This requires that they
be at least partially polarized in the same direction. We aim to demonstrate that
if two beams are polarized in mutually perpendicular directions, their interference
term vanishes and no observable fringes are formed.

Solution:

Let the electric field vectors of the two beams be:

E⃗1 = E0 cos(kx− ωt)x̂, E⃗2 = E0 cos(kx− ωt+ ϕ)ŷ

where:

• x̂ and ŷ are unit vectors in mutually perpendicular directions,

• ϕ is the phase difference between the two waves.

The total electric field is:

E⃗total = E⃗1 + E⃗2 = E0 cos(kx− ωt)x̂+ E0 cos(kx− ωt+ ϕ)ŷ

The observed intensity I is proportional to the time-averaged square of the total
electric field magnitude:

I ∝ ⟨|E⃗total|2⟩ = ⟨|E⃗1 + E⃗2|2⟩ = ⟨|E⃗1|2⟩+ ⟨|E⃗2|2⟩+ 2⟨E⃗1 · E⃗2⟩

Now, evaluating the cross term:

E⃗1 · E⃗2 = E2
0 cos(kx− ωt) cos(kx− ωt+ ϕ)(x̂ · ŷ)

Since x̂ · ŷ = 0 (orthogonal unit vectors), we have:

E⃗1 · E⃗2 = 0

Therefore:
⟨E⃗1 · E⃗2⟩ = 0

The individual intensity terms are:

⟨|E⃗1|2⟩ =
E2

0

2
, ⟨|E⃗2|2⟩ =

E2
0

2

Thus:
I = I1 + I2

There is no interference term, i.e., no dependence on phase difference ϕ. Therefore,
no interference fringes are observed.

Conclusion: Two beams of light polarized in perpendicular directions do not in-
terfere because their electric fields are orthogonal and yield no cross term in the
intensity expression. Hence, the total intensity is simply the sum of individual in-
tensities, and interference fringes are absent.
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35 When a thin film of a transparent material is put
behind one of the slits in Young’s double-slit inter-
ference experiment, the zero-order fringe moves to
the position previously occupied by the fourth-order
bright fringe. The index of refraction of the film is
n = 1.2 and the wavelength of light, λ = 5000 Å. De-
termine the thickness of the film.

Introduction: In Youngs double-slit experiment, adding a transparent film be-
hind one slit introduces an additional optical path, shifting the interference pattern.
When the central (zero-order) fringe shifts to the position of the fourth bright fringe,
it indicates a path difference equivalent to 4 wavelengths. We are given:

• Refractive index of film: n = 1.2

• Wavelength of light in vacuum: λ = 5000Å = 5000× 10−10 m = 5× 10−7 m

• Fringe shift: 4 orders

We are to determine the thickness t of the film.

Solution:

The optical path difference introduced by the film is:

∆ = (n− 1)t

This additional path causes a shift in the interference fringes. If the central fringe
shifts by m orders, then:

(n− 1)t = mλ

Given m = 4, we substitute:

(1.2− 1)t = 4 · 5× 10−7

0.2t = 2× 10−6

t =
2× 10−6

0.2
= 1× 10−5 m = 10µm

Conclusion: The thickness of the transparent film that shifts the central fringe to
the position of the fourth-order bright fringe is 10 micrometers.
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36 The separation between the slits is 0.5 mm in Young’s
double-slit experiment. The interference pattern ob-
served on a screen placed 5 m away reveals the loca-
tion of the first maximum which is 6 mm from the
centre of the pattern. Calculate the wavelength of
light and separation between second and third bright
fringes.

Introduction: In Youngs double-slit experiment, the interference fringes are formed
on a screen placed at a distance from the slits. The position of the bright fringes is
determined by the path difference of the waves from the two slits. We are given:

• Slit separation: d = 0.5mm = 5× 10−4 m

• Screen distance: L = 5m

• Distance of the first bright fringe from the center: y1 = 6mm = 6× 10−3 m

We are to calculate:

1. The wavelength λ of the light.

2. The separation between the second and third bright fringes.

Solution:

(i) Wavelength of light:

The position of the mth bright fringe is given by:

ym =
mλL

d

For the first maximum (m = 1):

y1 =
λL

d
⇒ λ =

y1d

L
=

6× 10−3 × 5× 10−4

5
=

3× 10−6

5
= 6× 10−7 m = 600 nm

(ii) Separation between second and third bright fringes:

Positions of the fringes:

y2 =
2λL

d
, y3 =

3λL

d
⇒ ∆y = y3 − y2 =

λL

d

Substitute the known values:

∆y =
6× 10−7 × 5

5× 10−4
=

3× 10−6

5× 10−4
= 6× 10−3 m = 6mm

Conclusion: The wavelength of the light used in the experiment is 600 nm, and
the separation between the second and third bright fringes is 6 mm.
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37 In a Young double slit experiment, the first bright
maximum is displaced by y = 2 cm from the central
maximum. If the spacing between slits and distance
from the screen are 0.1 mm and 1 m respectively,
find the wavelength of light.

Introduction: In Young’s double-slit experiment, the positions of bright fringes
on the screen are determined by the interference condition. The fringe position for
the m-th order maximum is given by the formula involving the wavelength λ, slit
separation d, and screen distance L. We are given:

• Position of first bright fringe: y = 2 cm = 0.02m

• Slit separation: d = 0.1mm = 1× 10−4 m

• Distance from the slits to the screen: L = 1m

We are to determine the wavelength λ of the light.

Solution:

The position of the m-th order bright fringe is given by:

ym =
mλL

d

For the first bright maximum (m = 1):

y1 =
λL

d

Solving for wavelength:
λ =

y1d

L

Substituting the known values:

λ =
0.02× 1× 10−4

1
= 2× 10−6 m = 2000 nm = 2µm

Physical Analysis: The calculated wavelength of 2000 nm corresponds to infrared
radiation, which is well outside the visible spectrum (380-700 nm). This suggests
either:

• The experiment uses infrared light (which would require special detection
equipment)

• There may be an error in the given measurements

• The fringe displacement might refer to a higher-order maximum rather than
the first maximum

For comparison, if this were visible light (say = 600 nm), the first bright fringe
would be located at:

y1 =
600× 10−9 × 1

1× 10−4
= 6× 10−3 m = 6mm

Conclusion: Based on the given parameters, the calculated wavelength is 2000
nanometers (2 m), which corresponds to infrared radiation. This result should
be verified against the experimental setup and detection method used.
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38 In Michelson interferometer, 100 fringes cross the
field of view when the movable mirror is displaced
through 0.029 mm. Calculate the wavelength of the
light source used.

Introduction: In a Michelson interferometer, when the movable mirror is displaced,
the optical path difference between the two arms changes, resulting in the movement
of interference fringes. Every time the optical path changes by one wavelength λ,
a fringe shifts by one order. However, because the light travels to the mirror and
back, a mirror displacement of ∆d results in an optical path change of 2∆d. We are
given:

• Number of fringes counted: N = 100

• Mirror displacement: ∆d = 0.029mm = 2.9× 10−5 m

We are to calculate the wavelength λ of the light.

Solution:

The total optical path difference created is 2∆d, and this corresponds to N wave-
lengths:

2∆d = Nλ ⇒ λ =
2∆d

N

Substitute the given values:

λ =
2× 2.9× 10−5

100
=

5.8× 10−5

100
= 5.8× 10−7 m = 580 nm

Conclusion: The wavelength of the light source used in the Michelson interferom-
eter is 580 nanometers.

11



A/P

39 Obtain the conditions for constructive interference
and destructive interference in a thin film due to
reflected light.

Introduction: When light is incident on a thin film, interference occurs due to the
superposition of light waves reflected from the top and bottom surfaces of the film.
The nature of the interference depends on the optical path difference and any phase
changes upon reflection. The conditions vary depending on the refractive indices of
the surrounding media.

Solution:

Consider a thin film of thickness t and refractive index n2, with medium of refractive
index n1 above and n3 below. For normal incidence, light reflects from both surfaces.

1. Phase changes on reflection: A phase change of π (equivalent to λ/2) oc-
curs when light reflects from a boundary where it encounters a medium of higher
refractive index:

• Reflection at top surface: phase change of π if n2 > n1, no phase change if
n2 < n1

• Reflection at bottom surface: phase change of π if n3 > n2, no phase change
if n3 < n2

2. Optical path difference: The optical path difference between the two reflected
rays is:

OPD = 2n2t

3. General interference conditions:

Case I: Both reflections have the same phase behavior (Either both have
phase change π or both have no phase change)

Constructive interference:

2n2t = mλ where m = 1, 2, 3, . . .

Destructive interference:

2n2t =

(
m+

1

2

)
λ where m = 0, 1, 2, . . .

Case II: One reflection has phase change, the other doesn’t (Net phase
difference of π between the two reflected rays)

Constructive interference:

2n2t =

(
m+

1

2

)
λ where m = 0, 1, 2, . . .

Destructive interference:

2n2t = mλ where m = 1, 2, 3, . . .

4. Common practical examples:

Soap film in air (n1 = 1, n2 > 1, n3 = 1): Case II applies
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• Constructive: 2n2t =
(
m+ 1

2

)
λ

• Destructive: 2n2t = mλ

Oil film on water (n1 = 1, n2 ≈ 1.5, n3 ≈ 1.33): Case I applies

• Constructive: 2n2t = mλ

• Destructive: 2n2t =
(
m+ 1

2

)
λ

Conclusion: The interference conditions in thin films depend critically on the rel-
ative refractive indices of the three media involved. When there is a net phase
difference of π between the two reflected rays (Case II), the conditions are reversed
compared to when both reflections have the same phase behavior (Case I). This
explains the variety of colors observed in different thin film situations.
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40 Explain with proper example the interferences due
to division of wavefront and division of amplitude.

Introduction: Interference of light results from the superposition of two or more
coherent light waves. The methods to produce coherent sources fall into two cate-
gories:

• Division of wavefront

• Division of amplitude

These methods are employed in different types of optical instruments to observe
interference patterns. We will explain each method with clear physical examples.

Solution:

1. Division of Wavefront:

Definition: This method involves splitting a single wavefront into two or more
parts which then follow different paths before overlapping to produce interference.

Example 1 Young’s Double-Slit Experiment: In Young’s double-slit experi-
ment:

• A monochromatic light source illuminates a narrow single slit

• The wavefront emerging from the slit diffracts and illuminates two narrow,
closely spaced slits

• These two slits act as coherent sources formed by division of the original wave-
front

• The light waves from the two slits overlap on a distant screen and interfere,
producing alternating bright and dark fringes

Example 2 Fresnel Double Mirror:

• Two plane mirrors are inclined at a small angle to each other

• Light from a narrow slit reflects from both mirrors, creating two coherent
virtual sources

• The reflected beams overlap in a region where interference fringes are observed

Key Features:

• Suitable for extended sources

• Requires spatial coherence over the wavefront

• The coherent sources are spatially separated

2. Division of Amplitude:

Definition: In this method, a single beam is partially reflected and transmitted
at one or more interfaces, creating multiple coherent beams from the same source.
These beams travel different paths and interfere upon recombination.

Example 1 Michelson Interferometer: In the Michelson interferometer:

• A beam splitter divides the amplitude of the incident light into two beams

• Each beam travels to a different mirror and reflects back
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• The beams recombine at the beam splitter and produce interference fringes
based on the path difference

• Used for precise measurements of wavelengths and small displacements

Example 2 Thin Film Interference:

• Light incident on a thin film (soap bubble, oil film) is partially reflected at the
top surface

• The remaining light enters the film and is partially reflected at the bottom
surface

• The two reflected beams interfere, producing colorful patterns depending on
film thickness and viewing angle

Key Features:

• More suitable for narrow, intense beams

• Requires temporal coherence (monochromaticity) of the source

• The coherent beams originate from the same point but travel different optical
paths

Comparison Summary:

Division of Wavefront Division of Amplitude
Spatially separates parts of a wave-
front

Splits light based on partial reflec-
tion/transmission

Young’s Double-Slit, Fresnel Double
Mirror

Michelson Interferometer, Thin Films

Spatial coherence Temporal coherence
Coherent sources are spatially sepa-
rated

Beams originate from same point

Demonstrating basic interference Precision measurements, optical coatings

Conclusion: Interference due to division of wavefront (e.g., Young’s experiment)
is achieved by geometrically splitting a single wavefront into spatially separated
coherent sources, while interference due to division of amplitude (e.g., Michelson
interferometer, thin films) is based on partial reflection and transmission of light
beams that originate from the same point. Both methods are fundamental to various
optical applications and rely on different aspects of coherence to produce stable
interference patterns.
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