
A/P

UPSC PHYSICS PYQ SOLUTION
Waves and Optics - Part 4

Contents
41 What is multiple-beam interference? Discuss the advantages

of multiple-beam interferometry over two-beam interferometry.
Explain the fringes formed by Fabry-Perot interferometer. 3

42 What are the fringes of equal thickness and fringes of equal in-
clination?
In a Newton’s ring arrangement with a source emitting two wave-
lengths λ1 = 6× 10−7 m and λ2 = 5.9× 10−7 m, it is found that the
mth dark ring due to one wavelength coincides with the (m+1)th

dark ring due to the other. Find the diameter of the mth dark
ring, if the radius of curvature of the lens is 90 cm. 6

43 What are Newton’s rings? How are they formed by two curved
surfaces? 9

44 Discuss the conditions for interference. Describe Young’s double-
slit experiment and derive an expression for the estimation of
fringe width. Discuss its dependency on various parameters.
Green light of wavelength 5100 Å from a narrow slit is incident
on a double-slit. If the overall separation of 10 fringes on a screen
200 cm away is 2 cm, find the slit separation. 11

45 Newton’s rings are observed between a spherical surface of radius
of curvature 100 cm and a plane glass plate. The diameters of 4th
and 15th bright rings are 0.314 cm and 0.574 cm, respectively.
Calculate the diameters of 24th and 36th bright rings and also
the wavelength of light used. 15

46 Obtain the expression for the primary focal length of Fresnel zone
plate. 17

47 The Fraunhofer single-slit diffraction intensity is given by I =
I0

sin2 x
x2 , where x = πdy

λl with l as distance from slit to source, d the
slit width, y the detector distance, and λ the wavelength. What
is the value of cumulative intensity

∫∞
−∞ I(y)dy? 19

48 In relation to a plane diffraction grating having 5000 lines per
cm and irradiated by light of wavelength 6000 Å, answer the
following: (i) What is the highest order spectrum which may be
observed? (ii) If the width of opaque space is exactly twice that
of transparent space, which order of spectra will be absent? 21

49 Distinguish between Fresnel and Fraunhofer classes of diffraction.
Show that the area of each Fresnel half-period zone is same. 23

1



A/P

50 A diffraction grating of width 5 cm with slits of width 10−4 cm
separated by a distance of 2 × 10−4 cm is illuminated by light
of wavelength 550 nm. What will be the width of the principal
maximum in the diffraction pattern? Would there be any missing
orders? 25

2



A/P

41 What is multiple-beam interference? Discuss the ad-
vantages of multiple-beam interferometry over two-
beam interferometry. Explain the fringes formed by
Fabry-Perot interferometer.

Introduction

This document addresses the principles of multiple-beam interference, a fundamental
concept in optics. In contrast to two-beam interference (as seen in Young’s double-
slit experiment), multiple-beam interference involves the superposition of numerous
light waves. This typically occurs when light undergoes multiple reflections within a
resonant cavity, such as a thin film or an optical instrument with parallel reflecting
surfaces. The primary objective is to define multiple-beam interference, delineate
its advantages over two-beam interference, and elucidate the formation of interfer-
ence fringes in a Fabry-Perot interferometer, a classic example of a multiple-beam
instrument. We assume the light source to be monochromatic and coherent for the
formation of a stable interference pattern.

Solution

Multiple-Beam Interference

Multiple-beam interference arises from the repeated division of a light wave’s ampli-
tude, typically through successive reflections and transmissions at the surfaces of a
thin film or between two parallel, highly reflective plates. Consider a beam of light
incident on such a system. A fraction of the light is transmitted, and a fraction
is reflected. The reflected portion strikes the second surface and is again partially
reflected and transmitted. This process continues, creating a series of parallel trans-
mitted and reflected beams. These beams are coherent as they originate from the
same source. Their superposition gives rise to the interference pattern.

The intensity distribution of the transmitted light in multiple-beam interference is
given by the Airy formula:

It = Ii
T 2

(1−R)2 + 4R sin2(δ/2)

where:

• It is the transmitted intensity.

• Ii is the incident intensity.

• T is the transmittance of the surfaces.

• R is the reflectance of the surfaces.

• δ is the phase difference between successive transmitted beams.

Assuming no absorption, T +R = 1. The phase difference δ is given by:

δ =
2π

λ
(2nd cos θ)

where:

• λ is the wavelength of the light.

• n is the refractive index of the medium between the reflecting surfaces.

• d is the separation between the surfaces.
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• θ is the angle of incidence of the light within the medium.

Constructive interference (maximum intensity) occurs when δ = 2mπ, where m is
an integer (the order of interference). This leads to highly intense and sharp bright
fringes.

Advantages of Multiple-Beam Interferometry over Two-Beam Interfer-
ometry

Multiple-beam interferometry offers significant advantages over two-beam interfer-
ometry, primarily stemming from the sharpness of the interference fringes.

1. Sharper Fringes: In two-beam interference (e.g., Michelson interferometer),
the intensity distribution follows a sinusoidal pattern (I ∝ cos2(δ/2)), resulting
in broad fringes. In contrast, multiple-beam interference produces very sharp
and narrow bright fringes against a broad dark background, especially for high
reflectance (R → 1). This sharpness allows for much more precise location of
the fringe maxima.

2. Higher Resolution: The sharpness of the fringes directly translates to a
higher resolving power. Instruments like the Fabry-Perot interferometer can
resolve very small differences in wavelength, making them invaluable tools in
spectroscopy for analyzing the fine structure of spectral lines.

3. Improved Measurement Precision: The narrowness of the fringes en-
hances the precision of measurements based on fringe displacement. A small
change in the optical path difference results in a more noticeable shift of a
sharp fringe compared to a broad one. This is crucial for applications like
measuring the thickness of thin films or determining refractive indices with
high accuracy.

Fringes Formed by a Fabry-Perot Interferometer

A Fabry-Perot interferometer consists of two parallel, flat, semi-transparent glass
plates coated with a highly reflective material on their inner surfaces. The space
between the plates can be air or another medium.

When an extended, monochromatic light source illuminates the interferometer, light
rays enter the cavity at various angles. A single ray from the source is multiply
reflected between the plates. At each reflection, a portion of the light is transmitted.
A lens is used to collect and focus the parallel transmitted rays to a single point on
a screen placed at the focal plane of the lens.

All rays that are transmitted through the interferometer at the same angle θ will
have the same phase difference and will be focused to the same point on the screen.
The condition for constructive interference for these rays is:

2nd cos θ = mλ

For a fixed plate separation d, refractive index n, and wavelength λ, this condition is
satisfied for specific values of the angle θ. Since the setup has cylindrical symmetry
about the axis normal to the plates, the locus of points corresponding to a constant
angle of inclination θ is a circle. Therefore, the interference pattern consists of a set
of concentric bright rings, each corresponding to a different order of interference m.
These rings are known as "fringes of equal inclination" or Haidinger fringes. The
fringes are extremely sharp and well-defined due to the multiple-beam interference
effect, especially when the reflectivity of the surfaces is high.

Conclusion
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Multiple-beam interference is a powerful phenomenon that occurs when a light wave
is divided into many coherent beams that interfere with one another. This leads to
interference patterns with significantly sharper fringes compared to those produced
by two-beam interference. The primary advantages of multiple-beam interferometry
are the increased sharpness of the fringes, which allows for higher resolving power
and greater precision in measurements. The Fabry-Perot interferometer is a prime
example of an instrument that utilizes multiple-beam interference to produce a set
of sharp, concentric circular fringes, known as fringes of equal inclination. These
characteristics make multiple-beam interferometry an indispensable technique in
high-resolution spectroscopy and precision metrology.
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42 What are the fringes of equal thickness and fringes
of equal inclination?
In a Newton’s ring arrangement with a source emit-
ting two wavelengths λ1 = 6 × 10−7 m and λ2 = 5.9 ×
10−7 m, it is found that the mth dark ring due to one
wavelength coincides with the (m+1)th dark ring due
to the other. Find the diameter of the mth dark ring,
if the radius of curvature of the lens is 90 cm.

Introduction

This problem consists of two parts. The first part requires a definition of two types
of interference fringes observed in thin films: fringes of equal thickness and fringes
of equal inclination. The second part is a numerical problem based on the Newton’s
rings experiment, which is an example of fringes of equal thickness.

In the numerical problem, we are given a Newton’s rings setup illuminated by a light
source with two distinct wavelengths, λ1 = 6 × 10−7 m and λ2 = 5.9× 10−7 m. We
are told that the mth dark ring for λ1 coincides with the (m+1)th dark ring for λ2.
The radius of curvature of the plano-convex lens is R = 90 cm = 0.9m. We need
to find the order of the ring, m, and the diameter of this mth dark ring (Dm). We
assume the interference occurs in an air film (µ ≈ 1) and is observed in the reflected
light under normal incidence.

Solution

Part 1: Fringes of Equal Thickness and Equal Inclination

Interference fringes in thin films arise from the superposition of light waves reflected
from the top and bottom surfaces of the film. The nature of the fringes depends on
the geometry of the film and the nature of the light source.

1. Fringes of Equal Thickness (Fizeau Fringes): These fringes are observed
when a thin film has a varying thickness, and it is illuminated by a broad source of
monochromatic light. Each fringe represents a locus of points where the thickness
of the film is constant. The path difference between the interfering rays depends
primarily on the film’s thickness (t) at that point. A classic example is the interfer-
ence pattern produced by a wedge-shaped air film or the Newton’s rings experiment,
where the thickness of the air film between the lens and the glass plate is constant
along a circle centered on the point of contact.

2. Fringes of Equal Inclination (Haidinger Fringes): These fringes are pro-
duced when a thin film of uniform thickness is illuminated by a broad source of
light. In this case, the path difference between interfering rays depends only on the
angle of inclination (θ) at which the light strikes the film. Each fringe is formed by
rays that have the same angle of inclination. These fringes are typically observed at
infinity or in the focal plane of a convex lens. An example is the interference pattern
observed in a Michelson interferometer when its mirrors are perfectly parallel.

Part 2: Newton’s Rings Calculation

In a Newton’s rings experiment, for reflection at normal incidence, a dark fringe
(destructive interference) occurs when the optical path difference is an integer mul-
tiple of the wavelength. Due to a phase shift of π (equivalent to a path difference of
λ/2) upon reflection at the denser medium (the glass plate), the condition for the
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kth dark ring is:
2µt = kλ

For an air film, µ = 1, and we denote the order by m, so the condition for the mth

dark ring is:
2t = mλ (m = 0, 1, 2, ...)

The relationship between the thickness of the air film t, the radius of the ring rm,
and the radius of curvature of the lens R is given by the geometric relation r2m ≈ 2Rt.
Substituting t = r2m/(2R) into the condition for a dark fringe, we get:

2

(
r2m
2R

)
= mλ =⇒ r2m = mλR

The diameter of the mth dark ring, Dm = 2rm, is therefore given by:

D2
m = 4r2m = 4mλR

Now, we apply the given condition that the mth dark ring for λ1 coincides with the
(m+ 1)th dark ring for λ2.

Dm,λ1 = Dm+1,λ2

Squaring both sides gives:
D2

m,λ1
= D2

m+1,λ2

Using the formula D2 = 4mλR:

4mλ1R = 4(m+ 1)λ2R

The term 4R cancels out:
mλ1 = (m+ 1)λ2

mλ1 = mλ2 + λ2

m(λ1 − λ2) = λ2

Now, we can solve for m by substituting the given values for the wavelengths:

λ1 = 6× 10−7 m

λ2 = 5.9× 10−7 m

m =
λ2

λ1 − λ2
=

5.9× 10−7 m
(6× 10−7 − 5.9× 10−7)m

=
5.9× 10−7

0.1× 10−7
= 59

So, the coincidence occurs for the 59th dark ring of wavelength λ1 and the 60th dark
ring of wavelength λ2.

The question asks for the diameter of the mth dark ring, which is D59 for λ1.

D2
59 = 4mλ1R

Substituting the values m = 59, λ1 = 6× 10−7 m, and R = 0.9m:

D2
59 = 4× 59× (6× 10−7 m)× (0.9m)

D2
59 = 236× 5.4× 10−7 m2

D2
59 = 1274.4× 10−7 m2 = 1.2744× 10−4 m2

Taking the square root to find the diameter:

D59 =
√

1.2744× 10−4 m = 1.12889× 10−2 m
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Converting to centimeters:
D59 ≈ 1.129 cm

Conclusion

The two types of interference fringes are defined as follows:

• Fringes of equal thickness are loci of points of constant film thickness.

• Fringes of equal inclination are loci of points corresponding to a constant
angle of incidence of light.

From the given conditions for the Newton’s rings experiment, the order of the dark
ring for the first wavelength is found to be m = 59. The diameter of this 59th dark
ring is calculated to be approximately 1.129 cm. This result is physically reasonable
for a standard Newton’s rings apparatus.
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43 What are Newton’s rings? How are they formed by
two curved surfaces?

Introduction

Newton’s rings are a classic interference phenomenon, first studied by Sir Isaac
Newton, that manifests as a series of concentric, alternating bright and dark circular
fringes. They are a prime example of thin-film interference. The pattern arises from
the reflection of light between two surfacestypically a plano-convex lens and a flat
glass platebut the principle extends to any two curved surfaces placed in contact,
creating a thin film of air between them.

Solution

1. Physical Mechanism and Path Difference

When a beam of monochromatic light of wavelength λ is normally incident on the
setup, it encounters a thin film of air (refractive index µ ≈ 1) of varying thickness t.

• A portion of the light reflects from the lower surface of the upper lens (a glass-
to-air interface, which is a denser-to-rarer medium reflection). This reflection
occurs with no phase change.

• Another portion of the light transmits through the air film and reflects from
the upper surface of the lower lens (an air-to-glass interface, which is a rarer-
to-denser medium reflection). This reflection introduces a phase change of
π radians, which is equivalent to an extra path length of λ/2.

The two reflected rays are coherent and interfere. The total optical path differ-
ence (∆) between them is the sum of the geometric path difference (twice the film
thickness for normal incidence, 2t) and the path difference from the phase change.

∆ = 2t+
λ

2

2. Geometry of the Air Film between Two Curved Surfaces

Let two spherical surfaces with radii of curvature R1 and R2 be in contact. Using
the property of a circle, the thickness t of the air film at a radial distance r from
the point of contact is given by the sum or difference of the individual sagittas (t1
and t2). For a single surface of radius R, the sagitta t is approximated as t ≈ r2

2R .
Thus, the total thickness is t = r2

2

(
1
R1

± 1
R2

)
.

We can define an effective radius of curvature, Reff , such that t = r2

2Reff
. The value

of 1/Reff depends on the configuration:

• For two convex surfaces: 1
Reff

= 1
R1

+ 1
R2

• For a convex surface (R1) on a concave surface (R2): 1
Reff

=
∣∣∣ 1
R1

− 1
R2

∣∣∣
Substituting the expression for t into the path difference equation gives:

∆ = 2

(
r2

2Reff

)
+

λ

2
=

r2

Reff
+

λ

2

3. Conditions for Interference and Ring Radii
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Constructive Interference (Bright Rings): For the reflected rays to interfere
constructively, the path difference must be an integer multiple of the wavelength.
Condition: ∆ = mλ, where m = 1, 2, 3, . . .

r2m
Reff

+
λ

2
= mλ

r2m
Reff

=

(
m− 1

2

)
λ =

(2m− 1)λ

2

The radius of the m-th bright ring is:

rm =

√
(2m− 1)λReff

2

Destructive Interference (Dark Rings): For destructive interference, the path
difference must be a half-integer multiple of the wavelength. Condition: ∆ = (m+
1
2)λ, where m = 0, 1, 2, . . .

r2m
Reff

+
λ

2
=

(
m+

1

2

)
λ

r2m
Reff

= mλ

The radius of the m-th dark ring is:

rm =
√
mλReff

At the center of the pattern (the point of contact), the thickness t = 0. For m = 0
in the dark ring condition, we get r0 = 0. The path difference here is ∆ = 0 + λ/2,
which satisfies the condition for destructive interference. Therefore, the central spot
is always dark.

Conclusion

Newton’s rings formed by two curved surfaces are a direct consequence of thin-film
interference in the wedge-shaped air film between them. The radii of the rings
depend on the wavelength of light (λ) and the effective radius of curvature (Reff ) of
the setup. The radius of the m-th bright ring is given by rm =

√
(2m− 1)λReff/2,

and the radius of the m-th dark ring is rm =
√

mλReff . The characteristic dark
center is a key feature, resulting from the π phase shift upon reflection at the denser
medium.
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44 Discuss the conditions for interference. Describe
Young’s double-slit experiment and derive an ex-
pression for the estimation of fringe width. Discuss
its dependency on various parameters.
Green light of wavelength 5100 Å from a narrow slit
is incident on a double-slit. If the overall separation
of 10 fringes on a screen 200 cm away is 2 cm, find
the slit separation.

Introduction

This problem requires a comprehensive discussion of optical interference, including
the necessary conditions for producing stable interference patterns, a detailed de-
scription of Young’s double-slit experiment (YDSE), derivation of the fringe width
expression, analysis of parameter dependencies, and solution of a numerical problem.

Given parameters for the numerical problem:

• Wavelength of light: λ = 5100Å = 5100× 10−10 m = 5.1× 10−7 m

• Screen distance: D = 200 cm = 2.0m

• Total width of 10 fringes: 10β = 2 cm = 0.02m

Solution

1. Conditions for Sustained Interference of Light

For two light waves to produce a stable, observable interference pattern, the following
conditions must be satisfied:

1. Coherence: The sources must be coherent, meaning they maintain a constant
phase relationship. This requires:

• Temporal coherence: The waves must have the same frequency (monochro-
matic light)

• Spatial coherence: The sources should be sufficiently small and close
together

2. Constant Phase Difference: The phase difference between the interfering
waves must remain constant over the observation time.

3. Comparable Amplitudes: The interfering waves should have similar ampli-
tudes for maximum fringe visibility. The visibility V = Imax−Imin

Imax+Imin
is maximized

when amplitudes are equal.

4. Same Polarization: The interfering waves must have the same polarization
state, as waves with perpendicular polarizations do not interfere.

5. Appropriate Geometry: The path difference between interfering rays should
be of the order of a few wavelengths for observable effects.

2. Young’s Double-Slit Experiment (YDSE)

Thomas Young’s 1801 experiment provided the first definitive proof of light’s wave
nature:

Experimental Setup:
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• A narrow slit S is illuminated by monochromatic light

• This primary slit creates cylindrical wavefronts that illuminate two parallel
narrow slits S1 and S2

• The slits S1 and S2 are separated by distance d and equidistant from S

• These act as coherent secondary sources, producing interfering cylindrical
waves

• A screen is placed at distance D from the double slit to observe the interference
pattern

3. Derivation of Fringe Width

Consider point P on the screen at distance y from the central axis O. Let the path
lengths from S1 and S2 to point P be r1 and r2 respectively.

Using geometry:

r1 =

√
D2 +

(
y − d

2

)2

r2 =

√
D2 +

(
y +

d

2

)2

The path difference is:
∆ = r2 − r1

For the approximation D ≫ d and D ≫ y, we can expand using the binomial
theorem:

r1 ≈ D +

(
y − d

2

)2
2D

≈ D +
y2

2D
− yd

2D

r2 ≈ D +

(
y + d

2

)2
2D

≈ D +
y2

2D
+

yd

2D

Therefore, the path difference becomes:

∆ = r2 − r1 ≈
yd

D

Interference Conditions:

Constructive Interference (Bright Fringes):

∆ = nλ, n = 0,±1,±2, . . .

ynd

D
= nλ

yn =
nλD

d

Destructive Interference (Dark Fringes):

∆ =

(
n+

1

2

)
λ, n = 0,±1,±2, . . .

y′n =

(
n+ 1

2

)
λD

d
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Fringe Width: The fringe width β is the distance between consecutive bright (or
dark) fringes:

β = yn+1 − yn =
(n+ 1)λD

d
− nλD

d

β =
λD

d

4. Parameter Dependencies

The fringe width formula β = λD
d shows:

1. Wavelength dependence: β ∝ λ

• Red light produces wider fringes than blue light

• For white light, different colors produce different fringe widths, leading
to colored fringes

2. Screen distance dependence: β ∝ D

• Moving the screen farther increases fringe separation

• Linear relationship allows easy scaling

3. Slit separation dependence: β ∝ 1
d

• Closer slits produce wider fringes

• This inverse relationship is crucial for fringe visibility

5. Numerical Solution

Given data:

• λ = 5.1× 10−7 m

• D = 2.0m

• Total separation of 10 fringes = 0.02m

First, calculate the fringe width:

β =
0.02m
10

= 2.0× 10−3 m

Using the fringe width formula:
β =

λD

d

Solving for slit separation:

d =
λD

β
=

(5.1× 10−7 m)(2.0m)

2.0× 10−3 m

d =
1.02× 10−6

2.0× 10−3
= 5.1× 10−4 m

d = 0.51mm

Conclusion

Young’s double-slit experiment elegantly demonstrates wave interference and pro-
vides quantitative relationships between experimental parameters. The fringe width
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formula β = λD
d establishes fundamental scaling laws for interference patterns. For

the given problem, the calculated slit separation of 0.51 mm demonstrates the preci-
sion achievable with interference-based measurements and validates the wave theory
of light.
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45 Newton’s rings are observed between a spherical sur-
face of radius of curvature 100 cm and a plane glass
plate. The diameters of 4th and 15th bright rings
are 0.314 cm and 0.574 cm, respectively. Calculate
the diameters of 24th and 36th bright rings and also
the wavelength of light used.

Introduction

This problem involves interference in the thin air film formed between a plano-convex
lens and a plane glass plate, producing Newton’s rings. We analyze the system in
reflected light to determine the wavelength and predict ring diameters.

Given Data:

• Radius of curvature: R = 100 cm

• Diameter of 4th bright ring: D4 = 0.314 cm

• Diameter of 15th bright ring: D15 = 0.574 cm

Required:

• Wavelength of light: λ

• Diameter of 24th bright ring: D24

• Diameter of 36th bright ring: D36

Solution

1. Theoretical Framework

For Newton’s rings in reflected light, a phase change of π occurs at the air-glass
interface. The condition for the n-th bright ring is:

2t = (2n− 1)
λ

2

where t is the air film thickness at radius rn.

From geometry, for small thickness: t ≈ r2n
2R

Substituting and using Dn = 2rn:

D2
n = 2(2n− 1)Rλ

For two different rings (m > n):

D2
m −D2

n = 4(m− n)Rλ

2. Wavelength Calculation

Using the 15th and 4th rings:

D2
15 = (0.574)2 = 0.329476 cm2

D2
4 = (0.314)2 = 0.098596 cm2

D2
15 −D2

4 = 0.230880 cm2
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From the difference formula:

λ =
D2

15 −D2
4

4(15− 4)R
=

0.230880

4× 11× 100
=

0.230880

4400

λ = 5.247× 10−5 cm = 5247Å

3. Verification Let’s verify our result is reasonable. The calculated wavelength
(5247 Å) corresponds to green light, which is physically reasonable.

4. Ring Diameter Calculations

Using the proportionality relationship to minimize rounding errors:

For the 24th ring:
D2

24 −D2
4

D2
15 −D2

4

=
24− 4

15− 4
=

20

11

D2
24 = D2

4 +
20

11
(D2

15 −D2
4)

D2
24 = 0.098596 +

20

11
(0.230880) = 0.098596 + 0.419782 = 0.518378 cm2

D24 =
√
0.518378 = 0.720 cm

For the 36th ring:
D2

36 −D2
4

D2
15 −D2

4

=
36− 4

15− 4
=

32

11

D2
36 = D2

4 +
32

11
(D2

15 −D2
4)

D2
36 = 0.098596 +

32

11
(0.230880) = 0.098596 + 0.671651 = 0.770247 cm2

D36 =
√
0.770247 = 0.878 cm

5. Cross-verification We can verify our results using the fundamental equation:

• For n = 24: D2
24 = 2(2× 24− 1)× 100× 5.247× 10−5 = 0.518 cm2

• For n = 36: D2
36 = 2(2× 36− 1)× 100× 5.247× 10−5 = 0.770 cm2

Final Results

Wavelength of light: λ = 5247Å
Diameter of 24th bright ring: D24 = 0.720 cm
Diameter of 36th bright ring: D36 = 0.878 cm

Physical Interpretation The results confirm that the square of ring diameters
increases linearly with ring order, as predicted by theory. The calculated wavelength
corresponds to green light in the visible spectrum, which is consistent with typical
Newton’s ring experiments.
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46 Obtain the expression for the primary focal length
of Fresnel zone plate.

Introduction

A Fresnel zone plate is a diffractive optical element used to focus light or other
waves. Unlike a conventional lens, which operates by refraction, a zone plate uses
diffraction. It consists of a set of concentric annular rings, known as Fresnel zones,
which are alternately transparent and opaque to the incident radiation. The design
is based on Augustin-Jean Fresnel’s method of dividing a wavefront into zones, called
half-period zones.

The working principle of a zone plate is to block the light from every other half-
period zone (e.g., the even-numbered zones). The light waves passing through the
remaining transparent zones (the odd-numbered zones) interfere constructively at a
specific point on the axis, called the focus. This constructive interference results in
a high-intensity spot. A zone plate has multiple foci, but the most intense one is
called the primary focus. This response derives the expression for the primary focal
length of a Fresnel zone plate.

Solution

Let us consider a plane wavefront of monochromatic light with wavelength λ incident
normally upon a Fresnel zone plate. Let the plate be situated in the XY-plane. We
wish to find the position of the primary focus, P, which lies on the z-axis (the axis
of symmetry). Let the distance from the center of the zone plate, O, to the point P
be fp (the primary focal length).

According to the principle of a Fresnel zone plate, the radii of the zones are chosen
such that the path difference between a wave diffracted from the edge of the n-th
zone and a wave passing through the center of the plate is an integer multiple of a
half-wavelength.

The path of the ray from the center of the plate O to the focal point P is simply fp.
The path of a ray from the edge of the n-th circular zone (with radius rn) to the
point P can be found using the Pythagorean theorem. This path length is

√
f2
p + r2n.

For the waves from the edge of the n-th zone and the center to arrive at P with
maximum constructive interference between successive transparent zones, the path
difference between them must be an odd multiple of λ/2. For the n-th zone edge,
this condition is: √

f2
p + r2n − fp = n

λ

2

Here, n is the integer representing the zone number (n = 1, 2, 3, . . .).

To solve for the primary focal length fp, we rearrange the equation:√
f2
p + r2n = fp + n

λ

2

Squaring both sides of the equation, we get:

f2
p + r2n =

(
fp + n

λ

2

)2

f2
p + r2n = f2

p + 2fp

(
n
λ

2

)
+

(
n
λ

2

)2
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f2
p + r2n = f2

p + fpnλ+
n2λ2

4

By canceling the f2
p term from both sides, we are left with:

r2n = fpnλ+
n2λ2

4

In practical optical scenarios, the focal length fp is much larger than the wavelength
of light λ (typically fp ∼ mm to cm, while λ ∼ hundreds of nm). For reasonable zone
numbers, the condition fp ≫ nλ/4 holds, making the term n2λ2

4 negligible compared
to fpnλ. We can therefore make the approximation:

r2n ≈ fpnλ

Solving for the primary focal length:

fp =
r2n
nλ

This is the general expression for the primary focal length. For the first zone (n = 1),
this simplifies to the most commonly used form:

fp =
r21
λ

where r1 is the radius of the first (innermost) Fresnel zone.

Conclusion

The expression for the primary focal length, fp, of a Fresnel zone plate is:

fp =
r21
λ

where r1 is the radius of the first zone and λ is the wavelength of the incident light.
More generally, for any zone n:

fp =
r2n
nλ

This formula highlights a key characteristic of a zone plate: its focal length is in-
versely proportional to the wavelength of light. This is in stark contrast to a con-
ventional refractive lens, whose focal length is generally directly proportional to the
wavelength. This property makes zone plates highly useful as focusing elements in
applications where traditional lenses are impractical, such as for X-rays and other
forms of short-wavelength radiation.
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47 The Fraunhofer single-slit diffraction intensity is given
by I = I0

sin2 x
x2 , where x = πdy

λl with l as distance from
slit to source, d the slit width, y the detector dis-
tance, and λ the wavelength. What is the value of
cumulative intensity

∫∞
−∞ I(y)dy?

Introduction

This problem asks for the evaluation of the definite integral of the Fraunhofer single-
slit diffraction intensity function over all possible detector positions y. The intensity
distribution is given by:

I(y) = I0
sin2 x

x2

where x = πdy
λl , and we need to find:∫ ∞

−∞
I(y) dy

Note: While the problem states l as “distance from slit to source,” in the context
of Fraunhofer diffraction with a detector at distance y, this parameter l effectively
represents the characteristic distance in the diffraction geometry.

Solution

We set up the integral: ∫ ∞

−∞
I0
sin2

(
πdy
λl

)
(
πdy
λl

)2 dy

To evaluate this integral, we use the substitution x = πdy
λl .

From this substitution:
dx =

πd

λl
dy

dy =
λl

πd
dx

The limits of integration remain from −∞ to +∞ since both x and y range over the
same infinite domain.

Substituting into the integral: ∫ ∞

−∞
I0
sin2 x

x2
· λl
πd

dx

Factoring out the constants:

I0
λl

πd

∫ ∞

−∞

sin2 x

x2
dx

The integral
∫∞
−∞

sin2 x
x2 dx is a standard mathematical result that can be evaluated

using various methods including:

• Contour integration in complex analysis
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• Parseval’s theorem from Fourier analysis

• Integration by parts combined with the Dirichlet integral

The value of this integral is: ∫ ∞

−∞

sin2 x

x2
dx = π

Substituting this result: ∫ ∞

−∞
I(y) dy = I0

λl

πd
· π = I0

λl

d

Conclusion

The value of the cumulative intensity integral is:∫ ∞

−∞
I(y) dy = I0

λl

d

This result represents the mathematical evaluation of the given integral. The ex-
pression shows that the integral value is proportional to the peak intensity I0, the
wavelength λ, and the distance parameter l, while being inversely proportional to the
slit width d. This is purely a mathematical result of integrating the given intensity
function over all detector positions.
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48 In relation to a plane diffraction grating having 5000
lines per cm and irradiated by light of wavelength
6000 Å, answer the following: (i) What is the high-
est order spectrum which may be observed? (ii) If
the width of opaque space is exactly twice that of
transparent space, which order of spectra will be
absent?

Introduction: We analyze a diffraction grating with 5000 lines per cm illuminated
by light of wavelength λ = 6000Å = 6× 10−7 m. We need to find:

(i) The highest observable diffraction order

(ii) Which orders are absent due to the specific slit-to-opaque width ratio

Given Data:

• Lines per unit length: N = 5000 lines/cm = 5× 105 lines/m

• Wavelength: λ = 6000Å = 6× 10−7 m

• Opaque width = 2 Œ transparent width

Solution:

Part (i): Maximum Observable Order

The grating spacing (distance between adjacent slits) is:

d =
1

N
=

1

5× 105
= 2× 10−6 m

The grating equation for constructive interference is:

d sin θ = nλ

For the maximum observable order, we set sin θ = 1 (grazing angle):

nmax =
d

λ
=

2× 10−6

6× 10−7
=

20

6
= 3.33

Since n must be an integer:
nmax = ⌊3.33⌋ = 3

Part (ii): Missing Orders Due to Slit Structure

Let the transparent slit width be a and the opaque width be b = 2a.

The total grating spacing is:

d = a+ b = a+ 2a = 3a

Therefore: a = d
3 = 2×10−6

3 m

Physical Mechanism: Missing orders occur when the single-slit diffraction en-
velope has minima that coincide with grating maxima. The single-slit diffraction
minima occur at:

a sin θ = mλ for m = 1, 2, 3, . . .
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The grating maxima occur at:
d sin θ = nλ

For missing orders, these conditions must be satisfied simultaneously:

a sin θ

λ
= m and d sin θ

λ
= n

This gives us:
n

m
=

d

a
=

3a

a
= 3

Therefore: n = 3m

The missing orders are those where n is a multiple of 3:

nmissing = 3, 6, 9, 12, . . .

Complete Analysis: Given that the maximum observable order is nmax = 3, we
need to check which orders are both theoretically possible and not eliminated by the
single-slit envelope:

• Possible orders: n = 0, 1, 2, 3

• Missing orders due to slit structure: n = 3, 6, 9, . . .

• Orders that would be missing within the observable range: n = 3

Conclusion:

(i) The highest observable diffraction order is n = 3 .

(ii) Within the observable range, the 3rd order spectrum will be absent due to
the single-slit diffraction envelope. The observable orders are n = 0, 1, 2 only.

Physical Interpretation: The absence of the 3rd order occurs because the single-
slit diffraction pattern (determined by the individual slit width a) modulates the
overall grating pattern. When the opaque region is twice the transparent region,
the single-slit diffraction minimum coincides exactly with what would be the 3rd-
order grating maximum, causing its suppression.
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49 Distinguish between Fresnel and Fraunhofer classes
of diffraction. Show that the area of each Fresnel
half-period zone is same.

Introduction: Diffraction phenomena are categorized into two primary types based
on the geometry of wavefronts and the positions of the source and observation screen:
Fresnel and Fraunhofer diffraction. In this problem, we are to distinguish between
these two classes and then analytically show that the area of each Fresnel half-period
zone is the same.

Solution:

Distinction between Fresnel and Fraunhofer Diffraction:

(i) Wavefront Geometry:

• Fresnel Diffraction: The source or the screen or both are at finite
distances; hence, the incident wavefront is either spherical or cylindrical.

• Fraunhofer Diffraction: The source and the screen are effectively at
infinite distances (or lenses are used to simulate this), and the incident
wavefront is plane.

(ii) Nature of Analysis:

• Fresnel Diffraction: Involves complex integration due to varying path
differences across the aperture.

• Fraunhofer Diffraction: Involves simpler Fourier transform analysis of
aperture functions.

(iii) Experimental Setup:

• Fresnel Diffraction: No lenses are required.

• Fraunhofer Diffraction: Requires collimating and focusing lenses.

(iv) Practical Use:

• Fresnel Diffraction: Used in near-field applications like edge diffraction
and zone plates.

• Fraunhofer Diffraction: Used in far-field analysis like diffraction by
slits, gratings.

Proof that the Area of Each Fresnel Half-Period Zone is Same:

Let a plane wave be incident on a spherical surface centered at the observation point
P located at a distance b from the wavefront.

The radius rn of the n-th Fresnel half-period zone is defined such that the path
difference between rn and rn−1 is λ/2.

The path difference between a point at radius r on the wavefront and the center is
approximately:

δ =
r2

2b

Set the condition that the difference in δ between two successive zones equals λ/2:

r2n − r2n−1

2b
=

λ

2
⇒ r2n − r2n−1 = bλ
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Define the area An of the n-th half-period zone as:

An = πr2n − πr2n−1 = π(r2n − r2n−1) = πbλ

This result is independent of n, hence the area of each half-period zone is the same
and equal to πbλ.

Conclusion: Fresnel and Fraunhofer diffraction differ fundamentally in geometry
and setup. In Fresnel diffraction, the area of each half-period zone is constant and
equals πbλ, where b is the distance to the observation point and λ is the wavelength
of light.
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50 A diffraction grating of width 5 cm with slits of
width 10−4 cm separated by a distance of 2× 10−4 cm
is illuminated by light of wavelength 550 nm. What
will be the width of the principal maximum in the
diffraction pattern? Would there be any missing or-
ders?

Introduction: A diffraction grating has a total width of W = 5 cm and comprises
slits each of width a = 10−4 cm, with an adjacent slit separation (grating element) of
d = 2×10−4 cm. The wavelength of the incident light is λ = 550 nm = 5.5×10−5 cm.
We are to determine the angular width of the principal maximum and check for any
missing orders due to the relationship between a and d.

Solution:

(i) Width of the Principal Maximum:

The total number of slits N in the grating is:

N =
W

d
=

5

2× 10−4
= 2.5× 104

For a diffraction grating, the angular width of a principal maximum is determined
by the angular separation between the first minima on either side of the maximum.
The condition for minima adjacent to the nth order principal maximum is:

Nd sin θ = nNλ± λ

For the central maximum (n = 0), the first minima occur at:

Nd sin θ = ±λ

sin θ = ± λ

Nd

Substituting the values:

sin θ = ± 5.5× 10−5

2.5× 104 × 2× 10−4
= ±5.5× 10−5

5
= ±1.1× 10−5

Since sin θ ≪ 1, we can use the small angle approximation sin θ ≈ θ:

θ ≈ ±1.1× 10−5 radians

Converting to degrees:

θ ≈ ±1.1× 10−5 × 180

π
≈ ±6.3× 10−4 degrees

The total angular width of the central principal maximum is:

∆θ = 2× 6.3× 10−4 = 1.26× 10−3 degrees = 4.54 arcseconds

(ii) Missing Orders:

Missing orders occur when a principal maximum of the grating coincides with a
minimum of the single-slit diffraction envelope. The conditions are:
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• Principal maxima: d sin θ = nλ

• Single-slit minima: a sin θ = mλ (where m = ±1,±2, . . .)

For coincidence:
d sin θ

a sin θ
=

nλ

mλ
⇒ d

a
=

n

m

With d = 2× 10−4 cm and a = 10−4 cm:

d

a
=

2× 10−4

10−4
= 2

Therefore: n
m = 2, which gives n = 2m.

This means the orders n = 2, 4, 6, 8, . . . (all even orders) will be missing because they
coincide with the minima of the single-slit diffraction pattern.

Conclusion: The angular width of the central principal maximum is approximately
1.26 × 10−3 degrees or 4.54 arcseconds. Due to the relation d = 2a, all even-order
diffraction maxima (2nd, 4th, 6th, ...) are missing in the diffraction pattern.
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