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51 A parallel beam of light from a He-Ne laser (λ = 630
nm) is made to fall on a narrow slit of width 0.2×10−3

m. The Fraunhofer diffraction pattern is observed
on a screen placed in the focal plane of a convex lens
of focal length 0.3 m. Calculate the distance between
(i) first two minima and (ii) first two maxima on the
screen.

Introduction: In this problem, a monochromatic beam of wavelength λ = 630 nm =
630 × 10−9 m is incident on a narrow single slit of width a = 0.2 × 10−3 m. The
Fraunhofer diffraction pattern is projected onto a screen placed in the focal plane of
a convex lens with focal length f = 0.3m. We are required to compute the linear
distance on the screen between:

(i) The first two minima.

(ii) The first two maxima.

Solution:

(i) Distance between first two minima:

In single-slit diffraction, the angular positions of minima are given by:

a sin θm = mλ for m = ±1,±2, . . .

For small angles, sin θm ≈ tan θm ≈ θm, and the corresponding linear positions on
the screen are:

ym = f tan θm ≈ fθm = f
mλ

a

The positions of the first two minima are:

y1 = f
λ

a
, y2 = f

2λ

a

Hence, the distance between the first two minima is:

∆yminima = y2 − y1 = f
λ

a

Substituting the given values:

∆yminima = 0.3× 630× 10−9

0.2× 10−3

= 0.3× 630× 10−9

0.2× 10−3

= 0.3× 3.15× 10−3

= 0.945× 10−3 m = 0.945mm

(ii) Distance between first two maxima:

The "first two maxima" refers to the central maximum and the first secondary max-
imum. The central maximum extends from the first minimum on one side to the
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first minimum on the other side, while secondary maxima are located approximately
halfway between consecutive minima.

The central maximum spans from y = −f λ
a to y = +f λ

a , so its center is at y = 0.

The first secondary maximum is located approximately at:

y1st secondary ≈ y1 + y2
2

=
f λ
a + f 2λ

a

2
= f

3λ

2a

Therefore, the distance between the central maximum and first secondary maximum
is:

∆ymaxima = f
3λ

2a
− 0 = f

3λ

2a

Substituting the given values:

∆ymaxima = 0.3× 3× 630× 10−9

2× 0.2× 10−3

= 0.3× 1890× 10−9

0.4× 10−3

= 0.3× 4.725× 10−3

= 1.418× 10−3 m = 1.418mm

Conclusion:

(i) The distance between the first two diffraction minima is 0.945mm.

(ii) The distance between the first two maxima (central maximum and first sec-
ondary maximum) is 1.418mm.
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52 Explain the physical significance of resolving power
of a grating with relevant mathematical expression.

Introduction: The resolving power of a diffraction grating is a measure of its abil-
ity to distinguish between two spectral lines of nearly equal wavelengths. In spec-
troscopy and optics, high resolving power is essential for separating closely spaced
wavelengths in the emission or absorption spectra of substances.

Solution:

Definition and Mathematical Expression: The resolving power R of a diffrac-
tion grating is defined as:

R =
λ

∆λ

where:

• λ is the mean wavelength of the two spectral lines.

• ∆λ is the smallest difference in wavelength that can be resolved at λ.

Theoretical Derivation: According to the Rayleigh criterion, two spectral lines
are just resolved when the principal maximum of one coincides with the first mini-
mum of the other.

For a diffraction grating with N slits, the condition for principal maxima is:

d sin θ = nλ

where d is the grating spacing, n is the order, and θ is the diffraction angle.

The angular width of a principal maximum is determined by the first minima on
either side. The condition for the first minimum adjacent to the nth order maximum
is:

Nd sin θmin = nλ± λ

The angular separation between the principal maximum and its adjacent minimum
is:

∆θ =
λ

Nd cos θ

For the Rayleigh criterion to be satisfied, two wavelengths λ and λ+∆λ must have
their maxima separated by this angular width:

d(sin θ)

dλ
∆λ =

λ

Nd cos θ

From the grating equation, differentiating:

d(sin θ)

dλ
=

n

d cos θ

Substituting this into the Rayleigh condition:

n

d cos θ
∆λ =

λ

Nd cos θ

Simplifying:
n∆λ =

λ

N
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Therefore, the resolving power is:

R =
λ

∆λ
= nN

Physical Significance: The expression R = nN reveals several important physical
aspects:

(i) Order dependence: Higher spectral orders (n) provide greater resolving
power because the angular dispersion increases with order, spreading the spec-
trum more widely.

(ii) Grating size effect: More illuminated slits (N) increase resolving power
because a larger grating produces sharper diffraction maxima, allowing finer
discrimination between wavelengths.

(iii) Finite aperture limitation: The resolving power is fundamentally limited
by the finite size of the grating aperture, which determines the sharpness of
the diffraction pattern.

(iv) Trade-off consideration: While higher orders improve resolution, they also
reduce the intensity of diffracted light, creating a practical trade-off in spec-
troscopic applications.

Practical Implications: The resolving power formula indicates that to achieve
high spectral resolution, one must either:

• Use higher diffraction orders (limited by available light intensity)

• Employ gratings with more lines (larger physical size)

• Use both approaches in combination

This relationship explains why modern spectrometers use large gratings and why
echelle spectrometers (which use very high orders) can achieve extremely high reso-
lution.

Conclusion: The resolving power R = λ/∆λ = nN quantifies a grating’s capacity
to distinguish closely spaced spectral lines. This formula reveals that resolution is
fundamentally determined by the product of the diffraction order and the number
of illuminated grating lines, reflecting the physical principle that spectral resolution
depends on both angular dispersion and the sharpness of diffraction maxima.
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53 Considering a plane transmission diffraction grat-
ing, where d is the distance between two consecutive
ruled lines, m as the order number and θ as the an-
gle of diffraction for normal incidence, calculate the
angular dispersion dθ

dλ for an incident light of wave-
length λ.

Introduction: We are given a plane transmission diffraction grating with line spac-
ing d, used under normal incidence. The diffracted light forms maxima at angles θ
satisfying the grating equation. We are to derive the expression for angular disper-
sion, defined as dθ

dλ , which quantifies how much the diffraction angle θ changes with
a small change in wavelength λ.

Angular dispersion is a fundamental property that determines how effectively a
grating can separate different wavelengths spatially. The parameters involved are:

• d: grating spacing (distance between adjacent lines).

• m: order of diffraction.

• θ: angle of diffraction.

• λ: wavelength of incident light.

Solution: The diffraction condition for normal incidence is given by the grating
equation:

d sin θ = mλ

Differentiating both sides with respect to λ, we get:

d cos θ
dθ

dλ
= m

Solving for angular dispersion:
dθ

dλ
=

m

d cos θ

This is the required expression for angular dispersion.

Key insights from this expression:

(i) Angular dispersion increases with the order number m.

(ii) It also increases as cos θ decreases, i.e., as θ increases.

(iii) Finer gratings (smaller d) produce higher angular dispersion.

Conclusion: The angular dispersion of a plane transmission diffraction grating
under normal incidence is given by:

dθ

dλ
=

m

d cos θ

It measures the rate at which the diffraction angle changes with wavelength and is
crucial for the grating’s spectral resolution capability.
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54 Can D1 and D2 lines of sodium light (λD1
= 5890 Å and

λD2
= 5896 Å) be resolved in second-order spectrum

if the number of lines in the given grating is 450?
Explain.

Introduction: The question asks whether the sodium doublet lines D1 and D2 with
wavelengths λD1 = 5890 Å and λD2 = 5896 Å can be resolved in the second-order
spectrum using a diffraction grating with N = 450 lines. This involves evaluating
the resolving power R of the grating and comparing it with the required resolution
to distinguish these two lines.

Solution:

The resolving power of a grating is given by:

R =
λ

∆λ
= nN

where:

• n = 2 is the order of diffraction.

• N = 450 is the total number of illuminated lines.

• ∆λ = λD2 − λD1 = 5896− 5890 = 6Å

• λ =
λD1

+λD2
2 = 5890+5896

2 = 5893Å

Now compute the actual resolving power of the grating:

Rgrating = nN = 2× 450 = 900

Compute the required resolving power to distinguish the two lines:

Rrequired =
λ

∆λ
=

5893

6
≈ 982.17

Since Rgrating = 900 < Rrequired = 982.17, the grating does not have sufficient
resolving power.

Conclusion:

The sodium D1 and D2 lines cannot be resolved in the second-order spectrum using
a grating with only 450 lines, because the available resolving power (900) is less than
the required resolving power (≈ 982).
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55 Obtain an expression for the resolving power of a
grating explaining the Rayleigh’s criterion of resolu-
tion.

Introduction: The resolving power of a diffraction grating quantifies its ability
to distinguish between two closely spaced spectral lines. According to Rayleigh’s
criterion, two spectral lines are just resolvable when the principal maximum of one
coincides with the first minimum of the other. This criterion helps in deriving a
quantitative expression for the resolving power of a grating.

Solution:

Consider a plane diffraction grating with N lines and grating spacing d. The condi-
tion for constructive interference (principal maxima) is:

d sin θ = nλ

where:

• d is the grating spacing.

• θ is the diffraction angle.

• n is the order of diffraction.

• λ is the wavelength of incident light.

Rayleigh’s Criterion: Two wavelengths λ and λ + ∆λ are just resolvable when
the principal maximum of one coincides with the first minimum of the other.

Derivation of Angular Width: For a grating with N slits, the condition for the
first minimum adjacent to the principal maximum in the nth order is when the path
difference between rays from the first and last slits differs by one wavelength from
the condition for the principal maximum:

Nd sin θmin = nλ± λ

The angular separation between the principal maximum and its adjacent first min-
imum is:

∆θ = θmin − θ =
λ

Nd cos θ

This represents the angular half-width of the principal maximum.

Application of Rayleigh’s Criterion: Consider two wavelengths λ and λ+∆λ.
Their principal maxima occur at angles θ and θ +∆θsep respectively, where:

d sin θ = nλ

d sin(θ +∆θsep) = n(λ+∆λ)

Expanding the second equation for small ∆θsep:

d(sin θ + cos θ ·∆θsep) = nλ+ n∆λ

Subtracting the first equation:

d cos θ ·∆θsep = n∆λ
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Therefore:
∆θsep =

n∆λ

d cos θ

Resolution Condition: According to Rayleigh’s criterion, the two wavelengths
are just resolved when their angular separation equals the angular half-width of the
diffraction maximum:

∆θsep = ∆θ

Substituting the expressions:

n∆λ

d cos θ
=

λ

Nd cos θ

Simplifying:
n∆λ =

λ

N

Therefore:
∆λ =

λ

nN

Resolving Power: The resolving power is defined as:

R =
λ

∆λ
=

λ
λ
nN

= nN

Physical Interpretation: The expression R = nN reveals that:

(i) Higher diffraction orders (n) increase resolving power due to greater angular
dispersion.

(ii) More grating lines (N) produce sharper diffraction maxima, enabling finer
wavelength discrimination.

(iii) The resolving power is independent of the grating spacing d and depends only
on the total number of illuminated lines and the order used.

Conclusion: Using Rayleigh’s criterion, the resolving power of a plane transmission
diffraction grating is derived as:

R = nN

This expression shows that the resolving power increases with both the diffraction
order n and the total number of slits N , indicating that higher orders and more lines
yield finer spectral resolution.
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56 Show that the areas of all the half-period zones are
nearly the same. Find the radius of 1st half-period
zone in a zone plate whose focal length is 50 cm and
the wavelength of the incident light is 500 nm.

Introduction: A zone plate is an optical device made up of concentric rings known
as Fresnel zones, which alternately block or transmit light to focus it through diffrac-
tion. These zones are defined such that the path difference between successive zones
is half a wavelength. We aim to show that the areas of all half-period zones are
nearly equal and compute the radius of the first half-period zone for a given focal
length and wavelength.

Given:

• Focal length of zone plate, f = 50 cm = 0.5m

• Wavelength of light, λ = 500 nm = 500× 10−9 m

Solution:

Let rn be the radius of the nth Fresnel zone. For a zone plate focusing light at a
distance f from the plate, the radii of the zones are given by:

rn =
√
nfλ

Hence, the area of the nth zone (between rn−1 and rn) is:

An = πr2n − πr2n−1 = π(r2n − r2n−1)

Using the expression for rn:

An = π(nfλ− (n− 1)fλ)

= πfλ

This shows that:
An = πfλ (constant for all n)

Hence, the area of each half-period zone is approximately the same, independent of
n.

Now, compute the radius of the 1st half-period zone (n = 1):

r1 =
√

1 · f · λ =
√
0.5 · 500× 10−9

=
√

2.5× 10−7

= 5× 10−4 m = 0.5mm

Conclusion:

• The areas of all half-period zones in a zone plate are approximately equal and
given by πfλ.

• The radius of the 1st half-period zone for f = 50 cm and λ = 500 nm is 0.5mm.
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57 A plane transmission grating has 3000 lines in all,
having width of 3 mm. What would be the angular
separation in the first order spectrum of the two
sodium lines of wavelengths 5890 Å and 5896 Å?
Can they be seen distinctly?

Introduction: In this problem, a diffraction grating with 3000 lines and total width
3 mm is used to observe the sodium doublet at λ1 = 5890 Å and λ2 = 5896 Å. We
are to calculate:

(i) The angular separation between the first-order diffraction angles of the two
lines.

(ii) Whether the lines can be distinctly resolved using the grating.

Solution:

Given:

• Number of lines, N = 3000

• Grating width, W = 3mm = 3× 10−3 m

• Grating element, d = W
N = 3×10−3

3000 = 10−6 m

• Order of diffraction, n = 1

• λ1 = 5890Å = 5.890× 10−7 m, λ2 = 5896Å = 5.896× 10−7 m

• ∆λ = λ2 − λ1 = 6× 10−10 m

(i) Angular separation:

Method 1: Using angular dispersion formula The angular dispersion of a grating is
given by:

dθ

dλ
=

n

d cos θ

For the mean wavelength λ̄ = λ1+λ2
2 = 5893Å:

sin θ =
nλ̄

d
=

1× 5.893× 10−7

10−6
= 0.5893

θ = sin−1(0.5893) ≈ 36.04◦

cos θ = cos(36.04◦) ≈ 0.808

Therefore:
dθ

dλ
=

1

10−6 × 0.808
= 1.238× 106 rad/m

Angular separation:

∆θ =
dθ

dλ
×∆λ = 1.238× 106 × 6× 10−10 = 7.43× 10−4 rad

Converting to degrees:

∆θ = 7.43× 10−4 × 180

π
≈ 0.043◦
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Method 2: Direct calculation (verification) Using the grating equation for normal
incidence:

d sin θ = nλ

For first-order (n = 1):

sin θ1 =
5.890× 10−7

10−6
= 0.589

sin θ2 =
5.896× 10−7

10−6
= 0.5896

Computing the angles:

θ1 = sin−1(0.589) ≈ 36.02◦

θ2 = sin−1(0.5896) ≈ 36.06◦

Angular separation:
∆θ = θ2 − θ1 ≈ 0.04◦

Both methods give consistent results.

(ii) Resolving power:

Required resolving power:

Rrequired =
λ̄

∆λ
=

5893× 10−10

6× 10−10
≈ 982.17

Grating resolving power:

Rgrating = nN = 1× 3000 = 3000

Since Rgrating = 3000 > Rrequired = 982.17, the grating can resolve the lines with a
safety margin of about 3.

Conclusion:

• The angular separation between the first-order diffraction maxima of the sodium
D-lines is approximately 0.043◦ or 7.43× 10−4 radians.

• The lines can be distinctly resolved, as the resolving power of the grating
(3000) significantly exceeds the required value (≈ 982).
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58 Discuss the intensity distribution in Fraunhofer diffrac-
tion pattern due to a single slit. Obtain conditions
for maxima and minima of the intensity distribution.
Show that the intensity of the first maxima is about
4.95% of that of the principal maxima.

Introduction: In Fraunhofer diffraction due to a single slit, a plane wavefront is
incident normally on a slit of finite width. The light diffracts and forms a pattern
of alternating bright and dark fringes on a screen placed at the focal plane of a
converging lens. We aim to derive the mathematical expression for the intensity dis-
tribution, obtain the conditions for minima and maxima, and calculate the relative
intensity of the first secondary maximum.

Solution:

Derivation of Intensity Distribution: Let:

• a be the width of the slit,

• λ be the wavelength of light,

• θ be the angle of diffraction.

Consider the slit divided into many narrow strips of width dy. Each strip acts as
a source of secondary wavelets. The path difference between rays from a strip at
distance y from the center and the central ray is:

δ = y sin θ

The corresponding phase difference is:

ϕ =
2π

λ
y sin θ

The amplitude contribution from each strip is dE = E0
a dy, where E0 is the total

amplitude when all rays are in phase.

The resultant amplitude is:

E =

∫ a/2

−a/2

E0

a
eiϕdy =

E0

a

∫ a/2

−a/2
ei

2πy sin θ
λ dy

Let k = 2π sin θ
λ , then:

E =
E0

a

∫ a/2

−a/2
eikydy =

E0

a

[
eiky

ik

]a/2
−a/2

E =
E0

a
· 1

ik

(
eika/2 − e−ika/2

)
=

E0

a
· 2 sin(ka/2)

k

Substituting k = 2π sin θ
λ :

E = E0 ·
sin
(
πa sin θ

λ

)
πa sin θ

λ
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Let β = πa sin θ
λ , then:

E = E0
sinβ

β

The intensity is proportional to |E|2:

I(θ) = I0

(
sinβ

β

)2

where I0 is the intensity at θ = 0 (central maximum).

Conditions for Minima: Minima occur when sinβ = 0 (excluding β = 0), i.e.,

β = ±mπ (m = 1, 2, 3, . . .)

Thus:
πa sin θ

λ
= mπ ⇒ a sin θ = mλ

So, the angular positions of minima are:

sin θm =
mλ

a
(m = ±1,±2,±3, . . .)

Conditions for Maxima: The central maximum occurs at θ = 0 where β = 0.

For secondary maxima, we differentiate the intensity function:

d

dβ

(
sinβ

β

)2

= 0

This leads to:
d

dβ

(
sinβ

β

)
= 0

β cosβ − sinβ

β2
= 0

This gives the condition:
tanβ = β

This transcendental equation has solutions at β ≈ 1.4303π, 2.4590π, 3.4707π, . . . for
the first, second, third secondary maxima, respectively.

Relative Intensity of First Secondary Maximum: The first secondary maxi-
mum occurs at β1 ≈ 1.4303π = 4.493.

The intensity at this point is:

I1 = I0

(
sin(4.493)

4.493

)2

Since sin(4.493) ≈ −0.975 (taking absolute value for intensity):

I1 = I0

(
0.975

4.493

)2

= I0(0.217)
2 ≈ 0.0471I0
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More precisely:
I1 ≈ 0.0472I0 ≈ 4.72% of I0

This is very close to the stated 4.95

Physical Interpretation: The rapid decrease in intensity of secondary maxima
occurs because destructive interference becomes increasingly dominant as we move
away from the central maximum. The (sinβ/β)2 function ensures that most of the
diffracted light is concentrated in the central maximum.

Conclusion:

• The intensity distribution in Fraunhofer diffraction from a single slit is given
by:

I(θ) = I0

(
sinβ

β

)2

, β =
πa sin θ

λ

• Minima occur at a sin θ = mλ, m = ±1,±2, . . .

• Secondary maxima are determined by the condition tanβ = β

• The intensity of the first secondary maximum is approximately 4.72% of that
of the central (principal) maximum.
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59 Show that the phenomenon of Fraunhofer diffrac-
tion at two vertical slits is modulation of two terms
viz. double slit interference and single slit diffrac-
tion. Obtain the condition for positions of maxima
and minima.

Introduction: When monochromatic light undergoes Fraunhofer diffraction at two
vertical slits of finite width, the resulting intensity pattern exhibits a unique char-
acteristic: the sharp interference fringes from double-slit interference are modulated
by the broader envelope of single-slit diffraction. This occurs because each slit acts
as both a diffracting aperture and an interference source.

Solution: Let:

• a be the width of each slit,

• d be the distance between the centers of the two slits,

• λ be the wavelength of incident light,

• θ be the angle of observation from the central axis.

Step 1: Single-Slit Diffraction Pattern For a single slit of width a, the intensity
distribution is:

Isingle(θ) = I0

(
sinβ

β

)2

, where β =
πa sin θ

λ

This pattern has a central maximum and subsidiary maxima with decreasing inten-
sity.

Step 2: Double-Slit Interference Pattern For two infinitesimally narrow slits
separated by distance d, the interference pattern is:

Iinterference(θ) = I0 cos
2 δ, where δ =

πd sin θ

λ

This produces equally spaced fringes with equal intensity.

Step 3: Physical Origin of Modulation When slits have finite width, each slit
contributes to both diffraction and interference simultaneously:

• Each slit diffracts light according to its individual diffraction pattern

• The two slits interfere with each other based on their separation

• The resultant is the interference pattern modulated by the diffraction envelope

Step 4: Combined Intensity Pattern The total intensity is the product of the
two individual effects:

I(θ) = I0

(
sinβ

β

)2

cos2 δ

where:
β =

πa sin θ

λ
, δ =

πd sin θ

λ

This demonstrates that the interference fringes are modulated by the single-slit
diffraction envelope. The cos2 δ term creates the interference fringes, while the(
sinβ
β

)2
term acts as a modulating envelope.
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Conditions for Maxima: Primary maxima occur when both terms are maximum:

• Interference maxima: cos2 δ = 1 ⇒ δ = mπ

• This gives: d sin θ = mλ where m = 0,±1,±2, . . .

However, the actual intensity depends on the diffraction envelope at these positions.

Conditions for Minima: Minima occur when either term becomes zero:

(i) Interference minima:

cos2 δ = 0 ⇒ δ = (2n+ 1)
π

2

⇒ d sin θ = (2n+ 1)
λ

2
where n = 0,±1,±2, . . .

(ii) Diffraction minima:

sinβ

β
= 0 ⇒ sinβ = 0 and β ̸= 0

⇒ β = pπ where p = ±1,±2,±3, . . .

⇒ a sin θ = pλ

Missing Orders: Some interference maxima may be missing when they coincide
with diffraction minima, i.e., when:

d

a
=

p

m

Conclusion: The Fraunhofer diffraction pattern from two finite-width slits demon-
strates the modulation principle where:

• The intensity pattern: I(θ) = I0

(
sinβ
β

)2
cos2 δ

• Represents interference fringes modulated by a diffraction envelope

• Maxima occur at d sin θ = mλ (subject to diffraction envelope)

• Minima arise from either interference: d sin θ = (2n + 1)λ2 or diffraction:
a sin θ = pλ

• The phenomenon illustrates the superposition of wave effects in optics
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60 Discuss the phenomenon of Fraunhofer diffraction at
a single slit and show that the intensities of succes-
sive maxima are nearly in the ratio 1 : 4

9π2 :
4

25π2 :
4

49π2 .
Introduction: Fraunhofer diffraction at a single slit occurs when parallel monochro-
matic light passes through a narrow aperture and is observed at a large distance (far-
field approximation) or at the focal plane of a converging lens. This phenomenon
demonstrates the wave nature of light and produces a characteristic intensity pattern
with a dominant central maximum and progressively weaker secondary maxima.

Physical Description of the Phenomenon: When plane waves encounter a sin-
gle slit of width a, each point within the slit acts as a secondary source of spherical
wavelets (Huygens’ principle). The interference of these wavelets produces the ob-
served diffraction pattern. The intensity varies with angle due to the path difference
between rays from different parts of the slit.

Mathematical Analysis: Let:

• a be the width of the slit,

• λ be the wavelength of light,

• θ be the angle of diffraction from the normal.

The intensity distribution for single-slit Fraunhofer diffraction is:

I(θ) = I0

(
sinβ

β

)2

, where β =
πa sin θ

λ

Condition for Minima: Minima occur when the numerator is zero but the de-
nominator is non-zero:

sinβ = 0 and β ̸= 0

⇒ β = mπ (m = ±1,±2,±3, . . .)

⇒ a sin θ = mλ

Condition for Secondary Maxima: Secondary maxima occur where d
dβ

(
sinβ
β

)2
=

0, which leads to:
d

dβ

(
sinβ

β

)
= 0

⇒ β cosβ − sinβ

β2
= 0

⇒ tanβ = β

This transcendental equation has solutions approximately at:

βm ≈
(
m+

1

2

)
π (m = 1, 2, 3, . . .)

The approximation becomes more accurate for larger values of m.

Calculation of Intensity Ratios: For the central maximum (β = 0):

I0 = I0 lim
β→0

(
sinβ

β

)2

= I0
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For secondary maxima at βm ≈
(
m+ 1

2

)
π:

Im = I0

(
sin
[(
m+ 1

2

)
π
](

m+ 1
2

)
π

)2

Since sin
[(
m+ 1

2

)
π
]
= (−1)m, we have:

Im = I0

(
(−1)m(
m+ 1

2

)
π

)2

= I0

(
1(

m+ 1
2

)
π

)2

Computing for successive maxima:

(i) Central maximum: I0 = I0

(ii) First secondary maximum (m = 1):

I1 = I0

(
1
3π
2

)2

= I0

(
2

3π

)2

= I0 ·
4

9π2

(iii) Second secondary maximum (m = 2):

I2 = I0

(
1
5π
2

)2

= I0

(
2

5π

)2

= I0 ·
4

25π2

(iv) Third secondary maximum (m = 3):

I3 = I0

(
1
7π
2

)2

= I0

(
2

7π

)2

= I0 ·
4

49π2

General Pattern: The intensity of the m-th secondary maximum is:

Im = I0 ·
4

(2m+ 1)2π2

Intensity Ratio: Therefore, the ratio of successive maxima is:

I0 : I1 : I2 : I3 = 1 :
4

9π2
:

4

25π2
:

4

49π2

Numerical Values:
1 : 0.045 : 0.016 : 0.0083

Conclusion: The Fraunhofer diffraction pattern at a single slit exhibits a character-
istic intensity distribution with a dominant central maximum and rapidly decreasing
secondary maxima. The intensity ratios follow the pattern 1 : 4

9π2 : 4
25π2 : 4

49π2 ,
demonstrating the wave nature of light and the interference effects within the aper-
ture. This rapid decrease in intensity explains why only the central maximum and
first few secondary maxima are typically observable in practice.
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